Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

946 results about "X-ray fluorescence" patented technology

X-ray fluorescence (XRF) is the emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings and murals.

Element-specific X-ray fluorescence microscope and method of operation

An element-specific imaging technique utilizes the element-specific fluorescence X-rays that are induced by primary ionizing radiation. The fluorescence X-rays from an element of interest are then preferentially imaged onto a detector using an optical train. The preferential imaging of the optical train is achieved using a chromatic lens in a suitably configured imaging system. A zone plate is an example of such a chromatic lens; its focal length is inversely proportional to the X-ray wavelength. Enhancement of preferential imaging of a given element in the test sample can be obtained if the zone plate lens itself is made of a compound containing substantially the same element. For example, when imaging copper using the Cu La spectral line, a copper zone plate lens is used. This enhances the preferential imaging of the zone plate lens because its diffraction efficiency (percent of incident energy diffracted into the focus) changes rapidly near an absorption line and can be made to peak at the X-ray fluorescence line of the element from which it is fabricated. In another embodiment, a spectral filter, such as a multilayer optic or crystal, is used in the optical train to achieve preferential imaging in a fluorescence microscope employing either a chromatic or an achromatic lens.
Owner:CARL ZEISS X RAY MICROSCOPY

Iron alloy fusing sample preparation method for X-ray fluorescence spectrum analysis

The invention relates to an iron alloy fusing sample preparation method for X-ray fluorescence spectrum analysis, belonging to the technical field of materialization detection and aiming to solve the problem that fusing a film production alloy sample can erode a platinum crucible. The method comprises the steps of building up wall of the platinum crucible, preparing an oxidizing agent, pre-oxidizing an iron alloy sample and fusing and preparing sample from the iron alloy sample. The invention provides the fusing sample preparation method suitable for various iron alloys such as ferromanganese, silicomanganese, calcium silicon, ferrosilicon, ferromolybdenum, ferrotitanium, cymrite, ferrochrome, ferrocolumbium, ferrovanadium, silicon silicomanganese and the like. By adopting the method, a glass fusing piece can be manufactured without eroding the valuable platinum crucible, the sample can be completely oxidized in the sample preparation process, the sample preparation time is short, the prepared glass fusing piece is uniform and perfect, and the mineral effect and the granularity effect can be completely eliminated. The invention has safe and reliable method, simple and convenient operation and good repeatability, is suitable for various iron alloy samples and widens the application range of the fluorescence analysis.
Owner:HBIS COMPANY LIMITED HANDAN BRANCH COMPANY

Depth profile metrology using grazing incidence X-ray fluorescence

For small angles that are near critical angle, a primary incident X-ray beam has excellent depth resolution. A series of X-ray fluorescence measurements are performed at varying small angles and analyzed for depth profiling of elements within a substrate. One highly useful application of the X-ray fluorescence measurements is depth profiling of a dopant used in semiconductor manufacturing such as arsenic, phosphorus, and boron. In one example, angles are be varied from 0.01° to 0.20° and measurements made to profile arsenic distribution within a semiconductor wafer. In one embodiment, measurements are acquired using a total reflection X-ray fluorescence (TXRF) type system for both known and unknown profile distribution samples. The fluorescence measurements are denominated in counts/second terms and formed as ratios comparing the known and unknown sample results. The count ratios are compared to ratios of known to unknown samples that are acquired using a control analytical measurement technique. In one example the control technique is secondary ion mass spectroscopy (SIMS) so that the count ratios from the TXRF-type measurements are compared to ratios of integrals of SIMS profiles. In another example, the TXRF-type measurement ratios are compared to simulation profiles of known samples. Integrals of the SIMS profile that vary as a function of depth into the substrate correspond to the grazing incidence angles of the TXRF-like measurement and respective count rates.
Owner:ADVANCED MICRO DEVICES INC

Metrology Tool With Combined XRF And SAXS Capabilities

Methods and systems for performing simultaneous X-ray Fluorescence (XRF) and small angle x-ray scattering (SAXS) measurements over a desired inspection area of a specimen are presented. SAXS measurements combined with XRF measurements enables a high throughput metrology tool with increased measurement capabilities. The high energy nature of x-ray radiation penetrates optically opaque thin films, buried structures, high aspect ratio structures, and devices including many thin film layers. SAXS measurements of a particular location of a planar specimen are performed at a number of different out of plane orientations. This increases measurement sensitivity, reduces correlations among parameters, and improves measurement accuracy. In addition, specimen parameter values are resolved with greater accuracy by fitting data sets derived from both SAXS and XRF measurements based on models that share at least one material parameter. The fitting can be performed sequentially or in parallel.
Owner:KLA TENCOR TECH CORP

Multi-technique thin film analysis tool

A thin film analysis system includes multi-technique analysis capability. Grazing incidence x-ray reflectometry (GXR) can be combined with x-ray fluorescence (XRF) using wavelength-dispersive x-ray spectrometry (WDX) detectors to obtain accurate thickness measurements with GXR and high-resolution composition measurements with XRF using WDX detectors. A single x-ray beam can simultaneously provide the reflected x-rays for GXR and excite the thin film to generate characteristic x-rays for XRF. XRF can be combined with electron microprobe analysis (EMP), enabling XRF for thicker films while allowing the use of the faster EMP for thinner films. The same x-ray detector(s) can be used for both XRF and EMP to minimize component count. EMP can be combined with GXR to obtain rapid composition analysis and accurate thickness measurements, with the two techniques performed simultaneously to maximize throughput.
Owner:KLA TENCOR CORP

X-ray techniques using structured illumination

ActiveUS20160320320A1Great x-ray fluxEnhanced signalImaging devicesX-ray tube electrodesX Ray Emission SpectroscopySmall-angle X-ray scattering
This invention discloses a method and apparatus for x-ray techniques using structured x-ray illumination for examining material properties of an object. In particular, an object with one or more regions of interest (ROIs) having a particular shape, size, and pattern may be illuminated with an x-ray beam whose cross sectional beam profile corresponds to the shape, size and pattern of the ROIs, so that the x-rays of the beam primarily interact only with the ROIs. This allows a greater x-ray flux to be used, enhancing the signal from the ROI itself, while reducing unwanted signals from regions not in the ROI, improving signal-to-noise ratios and / or measurement throughputThis may be used with a number of x-ray measurement techniques, including x-ray fluorescence (XRF), x-ray diffraction (XRD), small angle x-ray scattering (SAXS), x-ray absorption fine-structure spectroscopy (XAFS), x-ray near edge absorption spectroscopy, and x-ray emission spectroscopy.
Owner:SIGRAY INC

Near-field X-ray fluorescence microprobe

This invention pertains to an x-ray microprobe that can be placed very close the sample surface. A practical implementation is an x-ray target material integrated to an atomic force microscope (AFM) tip and an electron beam is focused to the target materials to generate x-ray emission. This microprobe can be combined with energy-resolved detector or a fluorescence imaging system for material analysis applications.
Owner:CARL ZEISS X RAY MICROSCOPY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products