Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

566 results about "Molecular diagnostics" patented technology

Molecular diagnostics is a collection of techniques used to analyse biological markers in the genome and proteome—the individual's genetic code and how their cells express their genes as proteins—by applying molecular biology to medical testing. The technique is used to diagnose and monitor disease, detect risk, and decide which therapies will work best for individual patients.

Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents

A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.
Owner:PROVECTUS DEVICETECH

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Molecular diagnosis micro-fluidic chip, molecular diagnosis micro-fluidic chip system and applications of molecular diagnosis micro-fluidic chip and molecular diagnosis micro-fluidic chip system

The invention relates to the field of micro-fluidic chip molecular diagnosis, and in particular to a molecular diagnosis micro-fluidic chip, a molecular diagnosis micro-fluidic chip system and applications of the molecular diagnosis micro-fluidic chip and the molecular diagnosis micro-fluidic chip system. The chip comprises a sample injection unit (1) which is used for receiving to-be-detected samples, at least one liquid storage unit (2) for storing reaction reagents, a cell lysis unit (3) for conducting cell lysis and a nucleic acid amplification unit (4) for conducting nucleic acid amplification, wherein the cell lysis unit comprises a slit (31) as well as a first compartment (32) and a second compartment (33) which are separated by virtue of the slit; at least one compartment is configured with grinding micro-beads; the first compartment communicates with the sample injection unit; and the second compartment communicates with the at least one liquid storage unit, so as to receive acell lysis solution. The chip system is composed of three layers, namely an upper layer, a middle layer and a lower layer, wherein the chip is arranged on the middle layer; the upper and lower layersare used for covering and sealing the middle layer; the upper layer is provided with a sample injection hole which is connected to the sample injection unit, and the sample injection hole correspondsto an avoiding hole of the liquid storage unit. The chip is simple in detection process, high in sensitivity and strong in repeatability, and reaction samples can be quantified.
Owner:丁锐

Analysis of fragmentation patterns of cell-free DNA

Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and / or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
Owner:THE CHINESE UNIVERSITY OF HONG KONG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products