Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

47results about How to "Thermal resistance minimization" patented technology

Broadband power combining device using antipodal finline structure

A broadband power combining device includes an input port, an input waveguide section, a center waveguide section formed by stacked wedge-shaped trays, an output waveguide section, and an output port. Each tray is formed of a wedge-shaped metal carrier, an input antipodal finline structure, one or more active elements, an output antipodal finline structure, and attendant biasing circuitry. The wedge-shaped metal carriers have a predetermined wedge angle and predetermined cavities. The inside and outside surfaces of the metal carriers and surfaces of the cavity all have cylindrical curvatures. When the trays are assembled together, a cylinder is formed defining a coaxial waveguide opening inside. The antipodal finline structures form input and output arrays. An incident EM wave is passed through the input port and the input waveguide section, distributed by the input antipodal finline array to the active elements, combined again by the output antipodal finlines array, then passed to the output waveguide section and output port. A hermetic sealing scheme, a scheme for improving the power combining efficiency and thermal management scheme are also disclosed. The broadband power combining device operates with multi-octave bandwidth and is easy to manufacture, well-managed thermally, and highly efficient in power combining.
Owner:CW ACQUISITION

Ultra high thermal performance packaging for optoelectronics devices

A light emitting module comprises a light emitting device (LED) mounted on a high thermal dissipation sub-mount, which performs the traditionally function of heat spread and the first part of the heat sinking. The sub-mount is a grown metal that is formed by an electroplating, electroforming, electrodeposition or electroless plating process, thereby minimising thermal resistance at this stage. An electrically insulating and thermally conducting layer is at least partially disposed across the interface between the grown semiconductor layers of the light emitting device and the formed metal layers of the sub-mount to further improve the electrical isolation of the light emitting device from the grown sub-mount. The top surface of the LED is protected from electroplating or electroforming by a wax or polymer or other removable material on a temporary substrate, mould or mandrel, which can be removed after plating, thereby releasing the LED module for subsequent processing.
Owner:LUMILEDS HLDG BV

Thermal energy steering device

A thermal flux steering device and method for steering thermal flux into a concentrated area is provided. The thermal flux steering device includes a matrix impregnated with a plurality of thermally conductive inclusions. The thermally conductive inclusions are angled so as to steer thermal flux into a concentrated area such as a thermal energy sink in communication with the matrix. The thermally conductive inclusions may be filler fibers or thermally conductive particles impregnated within the matrix. Orientation of the thermally conductive inclusions may be determined by detecting the thermal flux of the thermal energy source, the thermodynamic properties of the matrix and the thermally conductive inclusions, and the location of the flux concentration area.
Owner:TOYOTA MOTOR CO LTD

Broadband Power Amplifier with A High Power Feedback Structure

InactiveUS20090231042A1High power feedback structureLarge optimum load impedanceSemiconductor/solid-state device detailsSolid-state devicesBroadband power amplifierPower over
A broadband power amplifier using a novel high power feedback structure is disclosed in this patent. Feedback is widely used in amplifier design to broaden the bandwidth of the amplifier. Traditionally, the feedback resistor is either an axial resistor placed over the top of the transistor or a surface mount resistor with a long PCB trace making up the rest of the feedback path. However, each of these methods has it's limitations. The axial resistor doesn't have good heat sinking capability and therefore cannot handle high power. The feedback on PCB makes the feedback path long and becomes positive feedback at high frequency, thus limiting the high end frequency of operation of the amplifier in a stable region. The feedback structure disclosed in this patent has a good heat sinking path, has very short feedback path; allowing for higher frequency operation. We successfully applied the feedback structures to a Gallium Nitride (GaN) transistor, which is a new type of power transistor that has low parasitic capacitance and high optimum load impedance, and demonstrated an amplifier with very high output power over extraordinarily broad bandwidth. Matching networks have been optimized to improve performance and stability. We have demonstrated that unconditional stability is achievable while operating over a broad bandwidth using this feedback structure.
Owner:JIA PENGCHENG +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products