Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

37results about How to "Performance degradation can be reduced" patented technology

Method and system for assessing the performance of crude oils

A methodology and system is disclosed which addresses outstanding needs of refiners to process cheaper crudes or blends of crudes. This method and system comprises a number of steps, including characterizing the impact of various constituents in the crude which result in fouling of heat exchangers; estimating model parameters; monitoring and predicting qualitative and quantitative performance; and determining optimal dosage of chemical treatments.
Owner:BL TECH INC

Dynamic interface management for interference mitigation

Dynamic interface management for interference mitigation is disclosed. In one aspect, an integrated circuit (IC) is provided that employs a control system configured to mitigate interference caused by an aggressor communications bus. The control system is configured to receive information related to interference conditions and adjust a data / clock mode of an interface corresponding to the aggressor communications bus. In this manner, the interface is configured to couple to the aggressor communications bus. The interface is configured to transmit signals to and receive signals from the aggressor communications bus. The control system is configured to use the information related to the interference conditions to set the data / clock mode of the interface to mitigate the interference experienced by a victim receiver, whether the victim receiver is wired or wireless. Thus, the control system provides designers with an additional tool that may reduce performance degradation of the victim receiver attributable to the interference.
Owner:QUALCOMM INC

Method and apparatus for mitigating performance degradation in digital low-dropout voltage regulators (DLDOs) caused by limit cycle oscillation (LCO) and other factors

A DLDO has a configuration that mitigates performance degradation associated with limit cycle oscillation (LCO). The DLDO comprises a clocked comparator, an array of power transistors, a digital controller and a clock pulsewidth reduction circuit. The digital controller comprises control logic configured to generate control signals that cause the power transistors to be turned ON or OFF in accordance with a preselected activation / deactivation control scheme. The clock pulsewidth reduction circuit receives an input clock signal having a first pulsewidth and generates the DLDO clock signal having the preselected pulsewidth that is narrower that the first pulsewidth, which is then delivered to the clock terminals of the clocked comparator and the digital controller. The narrower pulsewidth of the DLDO clock reduces the LCO mode to mitigate performance degradation caused by LCO.
Owner:UNIV OF SOUTH FLORIDA +1

Fast inter-base station ring (FIBR): new millimeter wave cellular network architectures and processes

Fifth Generation (5G) Millimeter Wave (mmWave) cellular networks are expected to serve a large set of throughput intensive, ultra-reliable, and ultra-low latency applications. To meet these stringent requirements, while minimizing the network cost, the 3rd Generation Partnership Project has proposed a new transport architecture, where certain functional blocks can be placed closer to the network edge. In this architecture, however, blockages and shadowing in 5G mmWave cellular networks may lead to frequent handovers (HOs) causing significant performance degradation. To meet the ultra-reliable and low-latency requirements of applications and services in an environment with frequent HOs, a Fast Inter-Base Station Ring (FIBR) architecture is described, in which base stations that are in close proximity are grouped together, interconnected by a bidirectional counter-rotating buffer insertion ring network. FIBR enables high-speed control signaling and fast-switching among BSs during HOs, while allowing the user equipment to maintain a high degree of connectivity. The FIBR architecture efficiently handles frequent HO events in mm Wave and/or Terahertz cellular systems, and more effectively satisfies the QoS requirements of 5G applications.
Owner:NEW YORK UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products