Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

510results about How to "Control load" patented technology

Network monitoring device, bus system monitoring device, method and program

A network monitoring device which monitors a network in which data is transmitted through relays, includes a monitoring frequency recording unit (111) which records monitoring frequencies for monitoring transmission statuses of the relays, a selection probability generating unit (112) which generates selection probability information which is probability values for the relays, a monitoring object determining unit (113) which determines, according to the monitoring frequency and the selection probability information, a relay the transmission status of which is to be monitored, a transmission status obtaining unit (106) which obtains transmission status information indicating a transmission status on the relay determined, a transmission status recording unit (107) which records the transmission status information, an activation level calculating unit (109) which calculates, using the transmission status information, activation level indicating suitability of the monitoring on the transmission statuses of the relays, and a monitoring frequency updating unit (110) which updates, based on the activation level, the monitoring frequency, and the network monitoring device detects the change in throughput on a data transmission path highly responsively.
Owner:PANASONIC CORP

Touch control liquid crystal display device

One inventive aspect is a touch control liquid crystal display device. The device includes a color film substrate, a thin film transistor array substrate, and a liquid crystal layer between the color film substrate and the thin film transistor array substrate. The color film substrate includes a grid-shaped black matrix layer, a touch control layer, and a color film layer. The touch control layer includes metal grid electrodes in a rectangle, where the metal grid electrodes include metal lines intersecting transversely and vertically. In addition, the metal grid electrodes include drive electrodes and sense electrodes. The drive electrodes are connected together through first metal connection lines in a first direction, and the sense electrodes are connected together through second metal connection lines in a second direction. In addition, the projection of the metal grid electrodes falls into the projection of the black matrix layer in the light transmission direction.
Owner:SHANGHAI TIANMA MICRO ELECTRONICS CO LTD

Data collection system and method

The invention provides a data collection system based on a Zookeeper cluster. The system comprises a message queue establishing unit and the Zookeeper cluster. The message queue establishing unit is used for establishing different message queues according to different data sources. The Zookeeper cluster is used for monitoring the states of a plurality of collectors, and enabling any message datum in the message queues to be collected by only one collector, wherein each message queue corresponds to a persistence node of the Zookeeper cluster. Each collector obtains message data under the coordination of the Zookeeper cluster, and corresponds to the temporary node of the persistence node. Correspondingly, the invention further provides a data collection method based on the Zookeeper cluster. According to the technical scheme, different collection modules can be arranged according to different data sources, different storage strategies are set according to different storage requirements, and diversity of data collection and storage is achieved.
Owner:YONYOU NETWORK TECH

System for determining position and velocity of targets from signals scattered by the targets

The present invention relates to a system for using signals scattered by targets to determine position and velocity for each of the targets and comprises a set of transmitters and receivers of electromagnetic or acoustic signals, said transmitters and receivers dispersed to known points. Each pair of transmitter and receiver, monostatic or bistatic, is named a measuring facility. The ranges of the transmitters are chosen so that a target at an arbitrary point within the position space can be measured via scattering in the target by at least four measuring facilities. For each measuring facility, target detection occurs with constant false alarm rate in the form of probabilities over resolution cells with regards to range and Doppler velocity and conceivable targets are placed in a 2-dimensional linear space belonging to the measuring facility. The 3-dimensional positions and 3-dimensional Doppler velocities are represented as a 6-dimensional linear position and velocity space subdivided into resolution cells with the same resolution of range and Doppler velocity that is found at the measuring facilities. For each intersection representing detections at at least four measuring facilities the probability is calculated that the intersection is a false alarm emanating intersections between subsets from different targets and when the probability falls below a predefined value, it is given that the intersection contains at least one target. The target positions and target velocities are extracted in this way.”
Owner:TOTALFORSVARETAB FORSKNINGSINSTITUT FOI

Preparation method of magnetic-functionalized graphene composite material

The invention provides a preparation method of a magnetic-functionalized graphene composite material, and relates to preparation of a graphene composite material. According to the invention, the preparation method is simple, the raw material is easily obtained, and the industrial production is easy; the prepared magnetic-functionalized graphene composite material has superparamagnetic property and is higher in saturated magnetization; and the graphene carrier is good in conductivity, and loaded ferroferric oxide nano particles are uniformly distributed, are small and are good in crystallizability. The preparation method comprises the following steps of: matching ethanediamine and water into a mixed solvent, then ultrasonically dispersing graphite oxide and iron acetylacetonate in the mixed solvent, and obtaining ethanediamine/dispersion of the graphite oxide and the iron acetylacetonate; transferring the ethanediamine/dispersion of the graphite oxide and the iron acetylacetonate into a reactor lined with polytetrafluoroethylene for reaction and obtaining solid products; and cleaning the solid products, collecting the products with a magnet, drying and obtaining the magnetic-functionalized graphene composite material.
Owner:XIAMEN FUNANO NEW MATERIAL TECH COMPANY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products