Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

174results about "Vacuum obtaining/maintenance" patented technology

Organic electroluminescent device

ActiveUS20080157656A1Effectively hinder moisture and oxygen from permeating through the sidewallsMaterial nanotechnologyDischarge tube luminescnet screensOxygenOrganic electroluminescence
An organic electroluminescent device. The organic electroluminescent device comprises a first barrier layer disposed on a substrate; organic electroluminescent elements disposed over the first barrier layer and encapsulated with a second barrier layer; and a getter layer disposed between the first and second barrier layers. Each of the first and second barrier layers includes an organic layer and an inorganic layer covering the top and sidewall surfaces of the organic layer, thus providing stacked inorganic sidewalls to hinder moisture and oxygen.
Owner:IND TECH RES INST

Organic light emitting diode display

An organic light emitting diode (OLED) display is provided. The OLED display includes a substrate, a subpixel on the substrate, and a multi-layered protective layer covering the subpixel. The multi-layered protective layer has a structure in which organic layers and inorganic layers are alternately stacked in a repeated manner and at least one moisture absorbing layer is interposed in the multi-layered protective layer.
Owner:LG DISPLAY CO LTD

Display device employing gas discharge tubes arranged in parallel between front and rear substrates to comprise a display screen, each tube having a light emitting section as part of the display screen and a cleaning section connected to the light emitting section but displaced from the display screen

InactiveUS7049748B2Deterioration of discharge characteristic is preventedInhibit deteriorationAddress electrodesSustain/scan electrodesFluorescencePhosphor
A gas discharge tube has a phosphor layer formed and a discharge gas enclosed within an elongated tube which is to serve as the gas discharge tube. The gas discharge tube includes a light-emitting section and a cleaning section for cleaning the discharge gas. The cleaning section is connected to the light-emitting section.
Owner:SHINODA PLASMA

Getter device

A getter device including a substrate formed of a first getter material having a composition for gettering a first gas specie, and a second getter material contacting an external surface of the substrate and having a composition for gettering a second gas specie. The substrate has internal porosity connected to openings at its external surface, and the second getter material covers at least a portion of the external surface of the substrate but is absent from at least part of the internal porosity within the substrate so that the first getter material is exposed within the internal porosity for gettering the first gas specie. According to a second aspect, a substrate is formed of a material transparent to radiation, and a film of getter material is deposited on the substrate to be sufficiently thin and / or porous so that the film is also transparent to the radiation transmitted through the substrate.
Owner:MATERION

Charged particle beam apparatus

There is provided a compact charged particle beam apparatus with a non-evaporable getter pump which maintains high vacuum even during emission of an electron beam without generating foreign particles. The apparatus comprises: a charged particle source; a charged particle optics which focuses a charged particle beam emitted from the charged particle source on a sample and performs scanning; and means of vacuum pumping which evacuates the charged particle optics. The means of vacuum pumping has a differential pumping structure with two or more vacuum chambers connected through an opening in series. A pump made of non-evaporable getter alloy is placed in an upstream vacuum chamber with a high degree of vacuum, and a gas absorbing surface of the non-evaporable getter alloy is fixed without contact with another part.
Owner:HITACHI HIGH-TECH CORP

Light-emitting and electron-emitting devices having getter regions

A light-emitting device contains getter material (58) typically distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device similarly contains getter material (112, 110 / 112, 128, 132, and 142) typically distributed relatively uniformly across the active electron-emitting portion of the device.
Owner:CANON KK +1

Method and Apparatus for Monitoring a Charged Particle Beam

An ionization chamber with spatial distribution electrode for monitor hadron beam currents used for therapeutic treatment. Ionization chamber comprises humidity control, environmental sensing and real-time correction thereof. A flexible hermetic seal provide for ambient pressure equalization. X-Y electrode planes measure Gaussian distribution of incident particle beam. Methods described herein are suitable to fabricate highly accurate, low scattering electrodes with high spatial resolutions.
Owner:PYRAMID TECHN CONSULTANTS

High Voltage High Current Regulator

ActiveUS20120081097A1Minimized size requirementPreventing internal electrical short circuitAnti-noise capacitorsElectrode assembly support/mounting/spacing/insulationHigh voltage igbtControl signal
High voltage high current regulator circuit for regulating current is interposed between first and second terminals connected to an external circuit and comprises at least one main-current carrying cold-cathode field emission electron tube conducting current between the first and second terminals. First and second grid-control cold-cathode field emission electron tubes provide control signals for first and second grids of the at least one main-current carrying cold-cathode field emission electron tube for positive and negative excursions of voltage on the first and second terminals, respectively. The current regulator circuit may be accompanied by a voltage-clamping circuit that includes at least one cold-cathode field emission electron tube. At least two cold-cathode field emission electron tubes, configured to operate at high voltage and high current, are preferably contained within a single vacuum enclosure and are interconnected to provide a circuit function, so as to form a high voltage high current vacuum integrated circuit.
Owner:ADVANCED FUSION SYST LLC

Micro vacuum pump for maintaining high degree of vacuum and apparatus including the same

The present invention provides a micro vacuum pump capable of enhancing the performance of exhausting rare gases as well as active gases thereby to ensure quality, good repeatability and stable getter action of the micro vacuum pump over a long time. The invention also provides an apparatus assembling the micro vacuum pump. The micro vacuum pump capable of maintaining a high degree of vacuum includes a first conductive substrate having many protrusions and mounting a second conductive substrate disposed with a predetermined interval provided with respect to the first conductive substrate so that it faces the protrusions. A gate electrode is disposed in the vicinity of the apexes of the protrusions on the first conductive substrate via an insulator layer, and is positioned to face the second conductive substrate. Relative to the first conductive substrate, a negative potential is supplied to the second conductive substrate, and, a same negative potential difference is also applied to the gate electrode relative to the cones.
Owner:NEC CORP

Image forming apparatus

An image forming apparatus in which a first substrate provided with an electron-emitting device and an image displaying member which electrons emitted from the electron-emitting device irradiate are arranged to be opposed is provided with a deflecting means deflecting the electrons emitted from the electron-emitting device and a trapping unit trapping an inert gas ionized by the electrons. Thereby, the damages of the electron-emitting device by the inert gas are prevented, and the life of an image display apparatus is aimed to be elongated.
Owner:CANON KK

Germicidal low pressure mercury vapor discharge lamp with amalgam location and temperature control permitting high output

A germicidal lamp having amalgam for controlling mercury vapor pressure contained in a location facilitating efficient high output operation. A low pressure mercury vapor discharge lamp has an amalgam container containing an amalgam positioned behind an electrode out of the arc path or space. The amalgam position is retained during high wall loading of the lamp preventing the amalgam from moving out of position. A heating and cooling element is placed generally at the amalgam position controlling the temperature of the amalgam. Efficient operation with high current loads and resulting high wall loading and temperatures is possible. The temperature control of the amalgam may also be used to dim or modify the illumination output of the lamp. The germicidal lamp is particularly suited to being positioned vertically in a waste water treatment system.
Owner:LIGHT SOURCES INC

Field emission display manufacturing method having integrated getter arrangement

A field emission display (FED) and a manufacturing method thereof are provided. The FED includes a getter portion isolated outwardly from an active display region. This getter portion includes a non-evaporable getter layer for absorbing gas and an electron emission source for activating the getter layer. Accordingly, by activating the non-evaporable getter, the gas generated in the display is easily absorbed, and the FED is maintained in a high vacuum state.
Owner:SAMSUNG SDI CO LTD

System and method for sealing high intensity discharge lamps

In accordance with certain embodiments, the present technique includes a system for sealing a lamp including a thermal shield and a thermally susceptible enclosure disposed adjacent the thermal shield. The thermal shield has a first receptacle adapted to receive a first portion of the lamp. The thermally susceptible enclosure comprises a wall about a second receptacle adapted to receive a second portion of the lamp. The wall has a varying thickness in a desired sealing region between the first and second portions of the lamp.
Owner:GENERAL ELECTRIC CO

Getter device

A getter device including a substrate formed of a first getter material having a composition for gettering a first gas species, and a second getter material contacting an external surface of the substrate and having a composition for gettering a second gas species. The substrate has internal porosity connected to openings at its external surface, and the second getter material covers at least a portion of the external surface of the substrate but is absent from at least part of the internal porosity within the substrate so that the first getter material is exposed within the internal porosity for gettering the first gas species. According to a second aspect, a substrate is formed of a material transparent to radiation, and a film of getter material is deposited on the substrate to be sufficiently thin and / or porous so that the film is also transparent to the radiation transmitted through the substrate.
Owner:MATERION

Charged particle beam apparatus

There is provided a compact charged particle beam apparatus with a non-evaporable getter pump which maintains high vacuum even during emission of an electron beam without generating foreign particles. The apparatus comprises: a charged particle source; a charged particle optics which focuses a charged particle beam emitted from the charged particle source on a sample and performs scanning; and means of vacuum pumping which evacuates the charged particle optics. The means of vacuum pumping has a differential pumping structure with two or more vacuum chambers connected through an opening in series. A pump made of non-evaporable getter alloy is placed in an upstream vacuum chamber with a high degree of vacuum, and a gas absorbing surface of the non-evaporable getter alloy is fixed without contact with another part.
Owner:HITACHI HIGH-TECH CORP

Non-evaporation type getter, display unit and production method for them

Disclosed are a non-evaporation type getter excellent in gettering effect, capable of maintaining the inside of a gas-tight container in a display apparatus, particularly a flat panel display apparatus or the like, in a high vacuum condition, easy to mount and less liable to contaminate the inside of the gas-tight container, a display apparatus including the getter, and methods of manufacturing the same. The non-evaporation type getter (20) includes a molded body including at least one element selected from the group consisting of Ti, Zr, Al, V, and Fe as a principal constituent thereof, the molded body formed by powder injection molding. The molded body is composed of a porous body having a porosity of 10 to 30%.
Owner:SONY CORP

Gas discharge tube having electrodes with chemically inert surface

A new gas discharge tube with end electrodes having chemically inert surfaces is disclosed. As the surfaces are resistant to the build-up of layers, such as oxide layers, a discharge tube according to the invention exhibits higher selectivity and better performance (e.g. higher heat-resistance and longer life-cycle time) than prior art devices, simultaneously as it offers an environmentally acceptable solution.
Owner:BOURNS INC

Electron tube with a ring-less getter

In a method for manufacturing an electron tube including a front substrate and a back substrate, a wiring and an electrode are formed on the front substrate and / or the back substrate. A component is mounted on the front substrate and / or the back substrate. A ring-less getter is mounted on at least one of the front substrate, the back substrate and the component. A vessel is assembled and sealed so that the front substrate faces the back substrate. A light is irradiated on the ring-less getter from outside of the sealed vessel, thereby activating the ring-less getter.
Owner:FUTABA CORPORATION

Image display apparatus

An image display apparatus is provided with a vacuum chamber consisting of an electron source substrate and an image display substrate, and an ion pump which is attached to an electron-emitting substrate or the image display substrate and exhausts air from the vacuum chamber by the action of a magnet, wherein the magnet is attached and fixed to the substrate to which the ion pump has been attached. Thereby, the image display apparatus prevents the magnet from applying an excessive force to the ion pump by its weight, and acquires a stable structure without causing a vacuum leak.
Owner:CANON KK

Vacuum device having a getter

A vacuum device, including a substrate and a support structure having a support perimeter, where the support structure is disposed over the substrate. In addition, the vacuum device also includes a non-evaporable getter layer having an exposed surface area. The non-evaporable getter layer is disposed over the support structure, and extends beyond the support perimeter, in at least one direction, of the support structure forming a vacuum gap between the substrate and the non-evaporable getter layer increasing the exposed surface area.
Owner:SAMSUNG ELECTRONICS CO LTD

Device having a getter

A device including a substrate, a getter structure coupled to the substrate, and a photomask disposed over the getter structure. The photomask has a substantially transmissive and a substantially non-transmissive region. The substantially transmissive region substantially aligns with the getter structure.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for gettering an image display apparatus

An image display apparatus is provided with an external housing constituted by members including first and second substrates positioned with a gap therebetween, an electron source positioned on the first substrate in the external housing, and a fluorescent film and an accelerating electrode provided on the second substrate. A first getter is positioned in the image display area in the external housing. A second getter is provided, so that it is insulated from the electron source and the accelerating electrode, which surrounds the first getter.
Owner:CANON KK

Electrode stacks for electroactive devices and methods of fabricating the same

A cathode stack with a getter layer is disclosed. The cathode stack includes an electron injection layer, a capping layer and a getter layer. An organic electroactive device including a cathode stack with a getter layer is also presented. A method of fabricating an electroactive device with a cathode stack including a getter layer is also provided.
Owner:GENERAL ELECTRIC CO

Thick film getter paste compositions with pre-hydrated desiccant for use in atmosphere control

The invention is directed to a screen-printable getter composition comprising: (a) glass frit; and (b) pre-hydrated desiccant material; dispersed in (c) organic medium. The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure. The desiccant material is pre-hydrated to reach its saturation level of moisture absorption. The process of pre-hydration can be done by exposing the desiccant in a normal temperature / humidity environment of for example, 25° C. and 50-60% RH. for 24 to 48 hours or up to the time when weight gain (due to moisture absorption) stops increasing. An accelerated hydration process in a chamber with higher than normal humidity level (i.e. 50% Relative Humidity) is also applicable to shorten the time of exposure to fully hydrate the desiccant material.
Owner:EI DU PONT DE NEMOURS & CO

Organic optoelectronic device coated with a multilayer encapsulation structure and a method for encapsulating said device

The invention relates to an organic optoelectronic device, such as a display, lighting or signalling device, that is protected from the ambient air by a sealed encapsulation in the form of a thin film, and to a method for encapsulating such a device. An optoelectronic device (1) according to the invention is coated with a sealed multi-layer encapsulation structure (20) comprising alternating inorganic layers (21a to 26a) and organic layers (21b to 25b). According to the invention, the device is such that at least one of said organic layers consists of a crosslinked adhesive film (21b to 25b) based on a glue that can be crosslinked thermally or by electromagnetic radiation, the or each adhesive film having a thickness uniformly lower than 200 n, said thickness being obtained by passing the film, which is deposited and not yet cross-linked, through a vacuum, such that the total thickness of the encapsulation structure is minimized.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products