Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

399results about "3D structure electroforming" patented technology

Golf club head with face insert

A golf club head is provided having a club body and a contact plate secured to the club body. The contact plate defines at least a portion of a striking surface having a plurality of striking surface grooves. The contact plate is formed using an electroforming process.
Owner:TAYLOR MADE GOLF

Microdevices for Tissue Approximation and Retention, Methods for Using, and Methods for Making

Embodiments of invention are directed to micro-scale of mesoscale tissue approximation instruments that may be delivered to the body of a patient during minimally invasive or other surgical procedures. In one group of embodiments, the instrument has an elongated (longitudinal) configuration while with two sets of expandable wings that each have a toggle configuration that can be made to expand when located on opposite sides of a distal tissue region and a proximal tissue region and can then be made to move toward one another to bring the two tissue regions into more a proximal position. In some embodiments, multiple tissue approximation instruments are located within a delivery system for sequential delivery to a patient's body.
Owner:MICROFAB

Miniature RF and microwave components and methods for fabricating such components

RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and / or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and / or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and / or back filling operations).
Owner:MEMGEN

Methods of and apparatus for electrochemically fabricating structures via interlaced layers or via selective etching and filling of voids

Multi-layer structures are electrochemically fabricated by depositing a first material, selectively etching the first material (e.g. via a mask), depositing a second material to fill in the voids created by the etching, and then planarizing the depositions so as to bound the layer being created and thereafter adding additional layers to previously formed layers. The first and second depositions may be of the blanket or selective type. The repetition of the formation process for forming successive layers may be repeated with or without variations (e.g. variations in: patterns; numbers or existence of or parameters associated with depositions, etchings, and or planarization operations; the order of operations, or the materials deposited). Other embodiments form multi-layer structures using operations that interlace material deposited in association with some layers with material deposited in association with other layers.
Owner:MICROFAB

Three dimensional microfabrication

Method for making three-dimensional structures. A template is provided having at least two conductive regions separated by a non-conductive region. The template is disposed in an electrolyte in an electrodeposition cell and a voltage is established between one of the conductive regions and an electrode in the cell. Material is deposited on the one of the conductive regions connected to the voltage and subsequently bridges to the other conductive region with material deposition continuing on both of the at least two regions. The non conductive region may be a gap and the gap dimension is selected to regulate height differences between the at least two conductive regions.
Owner:MASSACHUSETTS INST OF TECH

Method for Making Electrically Conductive Three-Dimensional Structures

Methods are provided for fabricating three-dimensional electrically conductive structures. Three-dimensional electrically conductive microstructures are also provided. The method may include providing a mold having at least one microdepression which defines a three-dimensional structure; filling the microdepression of the mold with at least one substrate material; molding the at least one substrate material to form a substrate; and depositing and patterning of at least one electrically conductive layer either during the molding process or subsequent to the molding process to form an electrically conductive structure. In one embodiment, the three-dimensional electrically conductive microstructure comprises an electrically functional microneedle array comprising two or more microneedles, each including a high aspect ratio, polymeric three dimensional substrate structure which is at least substantially coated by an electrically conductive layer.
Owner:GEORGIA TECH RES CORP

Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures

Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are formed from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurring during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
Owner:MICROFAB

Methods of and apparatus for making high aspect ratio microelectromechanical structures

Various embodiments of the invention present techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion (ELEX(TM)) process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the ELEX(TM) process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of EFAB(TM).
Owner:MEMGEN

Electrochemical fabrication methods incorporating dielectric materials and/or using dielectric substrates

Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and / or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and / or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Owner:MICROFAB

Method of electrochemically fabricating multilayer structures having improved interlayer adhesion

Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
Owner:UNIV OF SOUTHERN CALIFORNIA

Electrochemical micromanufacturing system and method

An electrochemical printing system (100, 200) and method are disclosed having a printer head (130, 230) that expels a small jet of electrolyte (112) towards a conductive substrate (92) to facilitate electrodeposition or removal of material from the substrate. In an embodiment of the invention the printer head includes a plurality of individually addressable electrodes (220), each electrode having a channel therethrough and wherein the electrodes are much larger than the electrolyte jet outlet. The printer head includes means for inhibiting cross talk between electrodes. For example, the printer head may include a plenum (241) and a nonconductive cross-talk inhibition layer (245) upstream of the electrodes. A resolution defining layer (270) having small apertures (271) is provided at the distal end of the printer head.
Owner:UNIV OF WASHINGTON

Method of electrochemically fabricating multilayer structures having improved interlayer adhesion

Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
Owner:UNIV OF SOUTHERN CALIFORNIA

Mesoscale and microscale device fabrication methods using split structures and alignment elements

Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and / or the ability to form completely encapsulated and possibly hollow structures.
Owner:MICROFAB

Apparatus and method for forming 3D nanostructure electrode for electrochemical battery and capacitor

Embodiments described herein generally relate to an electrode structure for an electrochemical battery or capacitor, particularly, apparatus and methods of creating a reliable and cost efficient 3D electrode nano structure for an electrochemical battery or capacitor that has an improved lifetime, lower production costs, and improved process performance.
Owner:APPLIED MATERIALS INC

Process for fabricating a monolayer or multilayer metal structure in LIGA technology, and structure obtained

The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Owner:ROLEX SA

Multi-step release method for electrochemically fabricated structures

Multi-layer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching operations may be separated by intermediate post processing activities, they may be separated by cleaning operations, or barrier material removal operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
Owner:MICROFAB

Electrochemical fabrication methods incorporating dielectric materials and/or using dielectric substrates

Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and / or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and / or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Owner:MICROFAB

Method and apparatus for maintaining parallelism of layers and/or achieving desired thicknesses of layers during the electrochemical fabrication of structures

Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Owner:MICROFAB

Electrochemical fabrication methods with enhanced post deposition processing

InactiveUS20050029225A1Improved post deposition processingDecorative surface effects3D structure electroformingAlcoholNickel alloy
An electrochemical fabrication process for producing three-dimensional structures from a plurality of adhered layers is provided where each layer comprises at least one structural material (e.g. nickel or nickel alloy) and at least one sacrificial material (e.g. copper) that will be etched away from the structural material after the formation of all layers have been completed. An etchant containing chlorite (e.g. Enthone C-38) is combined with a corrosion inhibitor (e.g. sodium nitrate) to prevent pitting of the structural material during removal of the sacrificial material. A simple process for drying the etched structure without the drying process causing surfaces to stick together includes immersion of the structure in water after etching and then immersion in alcohol and then placing the structure in an oven for drying.
Owner:UNIV OF SOUTHERN CALIFORNIA

Electrochemical fabrication process for forming multilayer multimaterial microprobe structures

Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
Owner:UNIV OF SOUTHERN CALIFORNIA

Master electrode and method of forming it

A system and method comprising a master electrode arranged on substrate, said master electrode comprising a pattern layer, least partly of an insulating material and having a first surface provided with a plurality of cavities in which a conducting material is arranged, said electrode conducting material being electrically connected to at least one electrode current supply contact; said substrate comprising a top surface in contact with or arranged adjacent said first surface and having conducting material and / or structures of a conducting material arranged thereon, said substrate conducting material being electrically connected to at least one current supply contact; whereby a plurality of electrochemical cells are formed delimited by said cavities, said substrate conducting material and said electrode conducting material, said cells comprising an electrolyte; herein an electrode resistance between said electrode conducting material and said electrode current supply contact and a substrate resistance between said substrate conducting material and said substrate current supply contact are adapted for providing a predetermined current density in each electrochemical cell.
Owner:REPLISAURUS GROUP

Interposed substrate and manufacturing method thereof

A manufacturing method of an interposed substrate is provided. A photoresist layer is formed on a metal carrier. The photoresist layer has plural of openings exposing a portion of the metal carrier. Plural of metal passivation pads and plural of conductive pillars are formed in the openings. The metal passivation pads cover a portion of the metal carrier exposed by openings. The conductive pillars are respectively stacked on the metal passivation pads. The photoresist layer is removed to expose another portion of the metal carrier. An insulating material layer is formed on the metal carrier. The insulating material layer covers the another portion of the metal carrier and encapsulates the conductive pillars and the metal passivation pads. An upper surface of the insulating material layer and a top surface of each conductive pillar are coplanar. The metal carrier is removed to expose a lower surface of the insulating material layer.
Owner:UNIMICRON TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products