A wind vortex tower is enhanced by kinetic energy and heat of quasi-tangential and upward jets of saturated steam energizing, accelerating tornado-type flow and supporting stable electricity generation during the insufficient winds and calm. For action instead of absent wind at starts and operation over a long time, a staged system of flexible nozzles injects the steam jets into the zones of vortex channel. The system controls the tornado-type flow in the vorticity energizer, swirlers of sucked ambient air, condensate separators, re-enhancer of airflow and top diffuser. The steam is flashed from partially stored condensate heated nearly to 100° C. The condensate is partially delivered after centrifugal separation from saturated vortex core. The outside water heating system has one or two of compatible renewable, waste and secondary, or initial heat sources, and is intensified via sucking of heated water by vortex flow. A large-rating flow-through electric generator has an alternating magnetic whirl formed by magnetic concentrators whirled near vortex core and a three-phase stator with switched modules. The simplified towers are used for water and conditioned air production.