Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2128 results about "Transferase" patented technology

A transferase is any one of a class of enzymes that enact the transfer of specific functional groups (e.g. a methyl or glycosyl group) from one molecule (called the donor) to another (called the acceptor). They are involved in hundreds of different biochemical pathways throughout biology, and are integral to some of life’s most important processes. Transferases are involved in myriad reactions in the cell.

Fertile transgenic maize plants containing a gene encoding the pat protein

InactiveUS6395966B1Other foreign material introduction processesFermentationPhosphinothricin acetyltransferaseBotany
The present invention provides methods for increasing yield in plants by introducing a gene encoding phosphinothricin acetyltransferase. The invention further involves a method of transferring said increased yield phenotype to other lines of plants by crossing. A maize transformant is identified in which the phosphinothricin acetyltransferase gene integration event is correlated with increased yield.
Owner:MONSANTO TECH LLC

Glycopegylated granulocyte colony stimulating factor

The present invention provides conjugates between Granulocyte Colony Stimulating Factor and PEG moieties. The conjugates are linked via an intact glycosyl linking group that is interposed between and covalently attached to the peptide and the modifying group. The conjugates are formed from both glycosylated and unglycosylated peptides by the action of a glycosyltransferase. The glycosyltransferase ligates a modified sugar moiety onto either an amino acid or glycosyl residue on the peptide. Also provided are pharmaceutical formulations including the conjugates. Methods for preparing the conjugates are also within the scope of the invention.
Owner:NOVO NORDISK AS

Protein N-glycosylation of eukaryotic cells using dolichol-linked oligosaccharide synthesis pathway, other N-gylosylation-increasing methods, and engineered hosts expressing products with increased N-glycosylation

The level of glycosylation on products produced by a host (such as CHO cells, HEK cells and other mammalian cells, and non-mammalian cells) or patient can be increased by engineering, such as by supplying the host or patient with a gene sequence. For example, the host or patient can be made to produce desirably glycosylated products by increasing one or both of expression of N-glycan substrate containing lipid-liked oligosaccharide and expression of oligosaccharide (OST) transferase.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Engineering the pathway for succinate production

InactiveUS20120058530A1Increase overall carbon flowHigh expressionVectorsBacteriaMannheimiaPh control
This invention relates to the biocatalysts for the efficient production of succinic acid and / or other products from renewable biological feedstocks. The biocatalysts have a very high efficiency for the growth-coupled production of succinic acid and / or other products from carbohydrate feed stocks as a result of both genetic manipulations and metabolic evolution. More specifically, certain biocatalysts of the present invention produce succinic acid at high titers and yield in mineral salts media during simple pH-controlled, batch fermentation without the addition of any exogenous genetic material. The genetic manipulations of the present invention are concerned with the energy-conserving strategies coupled with the elimination of alternative routes for NADH oxidation other than the routes for succinic acid production. The biocatalysts contain glucose-repressed gluconeogenic phosphoenol pyruvate carboxykinase (pck) depressed by genetic modifications and a genetically-inactivated phosphotransferase system. In terms of succinic acid production efficiency, the biocatalysts of the present invention are functionally equivalent to succinate producing rumen bacteria such as Actinobacillus succinogens and Mannheimia succiniproducens with one difference that the biocatalysts are able to achieve this high level of succinic acid production in a minimal salt medium with carbohydrate source as opposed to the requirement for a rich media for succinic acid production by rumen bacteria.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Aminotransferase, mutant and application to Sitagliptin preparation

The invention discloses aminotransferase, a mutant and application to Sitagliptin preparation. According to the application, wet thalli obtained by performing fermentation culture on recombinant escherichia coli containing aminotransferase encoding genes are used as biocatalysts; Sitagliptin precursor ketone is used as a substrate; dimethyl sulfoxide is used as a latent solvent; phosphopyridoxal is used as a coenzyme; isopropylamine is used as an auxiliary substrate; a trolamine buffer solution with the pH being 8 to 9 is used as a reaction medium; a reaction system is formed; the biocatalytic reaction is performed under the conditions of the temperature being 30 to 45 DEG C and the stirring speed being 100 to 250 r/min; after the reaction is completed, the reaction liquid is separated and purified; the Sitagliptin is obtained. The aminotransferase and the mutant are used as biocatalysts; the latent carbonyl compound of Sitagliptin precursor ketone is directly used as the substrate; meanwhile, biocatalytic reaction is performed by using isopropylamine as the auxiliary substrate and using the pyridoxal phosphate as the coenzyme; the separation and purification is performed; Sitagliptin with high optical purity is prepared. The method has the advantages that the total yield is 76 percent; the product e.e. value reaches 99 percent.
Owner:ZHEJIANG UNIV OF TECH +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products