Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2299 results about "Acetylation" patented technology

Acetylation (or in IUPAC nomenclature ethanoylation) describes a reaction that introduces an acetyl functional group into a chemical compound. Deacetylation is the removal of an acetyl group. Acetylation refers to the process of introducing an acetyl group (resulting in an acetoxy group) into a compound, namely the substitution of an acetyl group for an active hydrogen atom. A reaction involving the replacement of the hydrogen atom of a hydroxyl group with an acetyl group (CH₃CO) yields a specific ester, the acetate. Acetic anhydride is commonly used as an acetylating agent reacting with free hydroxyl groups. For example, it is used in the synthesis of aspirin, heroin, and THC-O-acetate.

Laminated glass intermediate film and laminated glass

The present invention provides an intermediate film for laminated glass which can improve the sound-insulating property. The intermediate film for laminated glass according to the present invention has a layered structure including at least two layers, comprising: a first layer containing a polyvinyl acetal resin and a plasticizer; and a second layer positioned on a first surface of the first layer. In a phase diagram of three values including a degree of acetalization, a degree of acetylation, and a hydroxy group content of the polyvinyl acetal resin contained in the first layer, the values of the degree of acetalization, the degree of acetylation, and the hydroxy group content each fall within a region surrounded by a line including four straight lines connecting a first coordinate (degree of acetalization:degree of acetylation:hydroxy group content=70 mol %:30 mol %:0 mol %), a second coordinate (degree of acetalization:degree of acetylation:hydroxy group content=34 mol %:30 mol %:36 mol %), a third coordinate (degree of acetalization:degree of acetylation:hydroxy group content=94 mol %:0 mol %:6 mol %), and a fourth coordinate (degree of acetalization:degree of acetylation:hydroxy group content=100 mol %:0 mol %:0 mol %) in the stated order.
Owner:SEKISUI CHEM CO LTD

Industrial process for the synthesis of 17a-acetoxy-11ss-[4-(n,n-dimethyl-amino)- phenyl]-19-norpregna-4,9-diene-3,20-dione and new intermediates of the process

The present invention relates to a new industrial process for the synthesis of solvate- free 17a-acetoxy-11ss-[4-(N,N-dimethyl-amino)-phenyl]-19-norpregna-4,9-diene-3,20-dione [CDB -2914] of formula (I) which is a strong antiprogestogene and antiglucocorticoid agent. The invention also relates to compounds of formula (VII) and (VIII) used as intermediates in the process. The process according to the invention is the following: i) 3-(ethylene-dioxy)-estra-5(10),9(11)-diene-17-one of formula (X) is reacted with potassium acetilyde formed in situ in dry tetrahydrofuran by known method, ii) the obtained 3-(ethylene-dioxy)-17a-ethynyl-17ss-hydroxy-estra-5(10),9(11)-diene of formula (IX) is reacted with phenylsulfenyl chloride in dichloromethane in the presence of triethylamine and acetic acid, iii) the obtained isomeric mixture of 3-(ethylene-dioxy)-21-(phenyl-sulfinyl)-19-norpregna-5(10),9(11),17(20),20-tetraene of formula (VIII) is reacted first with sodium methoxide in methanol, then with trimethyl phosphite, iv) the obtained 3-(ethylene-dioxy)-17a-hydroxy-20-methoxy-19-norpregna-5(10),9(11),20-triene of formula (VII) is reacted with hydrogen chloride in methanol, then v) the obtained 3-(ethylene-dioxy)-17a-hydroxy-19-norpregna-5(10),9(11l); -diene-20- one of formula (VI) is reacted with ethylene glycol hi dichloromethane in the presence of trimethyl orthoformate and p-toluenesulfonic acid by known method, vi) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-19-norpregna- 5(10),9(11)-diene of formula (V) is reacted with hydrogen peroxide in a mixture of pyridine and dichloromethane in the presence of hexachloroacetone by known method, vii) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-5,10-epoxy-19-norpregn-9(11)-ene of formula (IV), containing approximately a 1:1 mixture of 5a,10a- and 5ss,10ss-epoxides, is isolated from the solution and reacted with a Grignard reagent obtained from 4-bromo-N,N-dimethyl-aniline in tetrahydrofuran.
Owner:RICHTER GEDEON NYRT

Methods for identifying agents which alter histone protein acetylation, decrease aging, increase lifespan

InactiveUS20030207325A1Extend your lifeEasy to identifyCompound screeningSenses disorderADPRibosylationNad dependent
Abstract of the Disclosure Methods of identifying agents which alter the NAD-dependent acetylation status and mono-ADP-ribosylation of nuclear proteins are disclosed. The methods further include identifying agents which alter the life span or aging of a cell or an organism by determining the level of NAD-dependent acetylation and / or ADP ribosylation of a nuclear protein. The invention also relates to a mammalian Sir2 protein which acetylates or deacetylates nuclear proteins in a NAD-dependent manner and has mono-ADP-ribosyltransferase activity. Host cells producing the Sir2 protein and antibodies to the Sir2 protein are also provided.
Owner:MASSACHUSETTS INST OF TECH

Method of identifying active chromatin domains

The invention provides a method of mapping DNA-protein interactions within a genome by fixing living cells to cross-link DNA and proteins, lysing the cells, and isolating chromatin by immunoprecipitation. DNA is purified and a SAGE protocol is performed on the purified DNA to produce GMAT-tag sequences, which are compared to a genomic sequence of the living cells to map DNA-protein interactions. The invention further provides a method of identifying an active chromatin domain and a method of identifying aberrant chromatin acetylation, wherein chromatin immunoprecipitation is performed using an antibody recognizing acetylated histone protein.
Owner:GOVERNMENT OF THE US REPRESENTED BY THE SEC

Glycosaminoglycans derived from K5 polysaccharide having high anticoagulant and antithrombotic activities and process for their preparation

Glycosaminoglycans derived from K5 polysaccharide having high anticoagulant and antithrombotic activity and useful for the control of coagulation and as antithrombotic agents are obtained starting from an optionally purified K5 polysaccharide by a process comprising the steps of N-deacetylation / N-sulfation, C5 epimerization, O-oversulfation, selective O-desulfation, 6-O-sulfation, N-sulfation, and optional depolymerization, in which said epimerization is performed with the use of the enzyme glucoronosyl C5 epimerase in solution or in immobilized form in the presence of divalent cations. New, particularly interesting antithrombin compounds are obtained by controlling the reaction time in the selective O-desulfation step and submitting the product obtained at the end of the final N-sulfation step to depolymerizazion.
Owner:ORESTE PASQUA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products