Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

232 results about "Host organism" patented technology

Expression of heterologous proteins

An expression system which provides heterologous proteins expressed by a non-native host organism but which have native-protein-like biological activity and / or structure. Disclosed are vectors, expression hosts and methods for expressing the heterologous proteins. The expression system involves co-expression of protein factor(s) which is / are capable of catalyzing disulphide bond formation and desired heterologous protein(s). The expression system is presented using yeast cells as the preferred host, protein disulphide isomerase (PDI) and thioredoxin (TRX) as the preferred examples of the protein factors and HCV-E2715 envelope glycoprotein and human FIGF as the preferred examples of the heterologous proteins.
Owner:NOVARTIS AG

Method for generating t-cells compatible for allogenic transplantation

The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and / or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and / or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and / or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Owner:CELLECTIS SA

Method for generating T-cells compatible for allogenic transplantation

The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and / or class I I major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and / or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and / or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Owner:CELLECTIS SA

Methods for measuring the rates of replication and death of microbial infectious agents in an infected

The present invention provides methods and kits useful for determining rates of replication and destruction of an infectious agent within an infected host organism. In the methods of the invention, an isotopically-labeled precursor molecule is administered to an infected host, and is given sufficient time to pass into the host's metabolic pools into a biochemical component of the infectious agent. The isotopic content and / or pattern or the rate of change of the isotopic content and / or pattern of the biochemical component is then measured to determine the rate of replication (growth) of the infectious organism while in the host. Alternatively, isotopic decay of labeled molecular components of the infectious agent is measured over time after discontinuing administration of the isotopically labeled precursor molecule to determine the rate of destruction (death) of the infectious agent while in the host. Thus, using methods of the invention, in vivo sensitivity of infectious agents to drug agents may be determined, in order to optimize therapy of the infected host.
Owner:RGT UNIV OF CALIFORNIA

Materials and methods relating to the attachment and display of substances on cell surfaces

InactiveUS6190662B1Improve the level ofHigh possible surface densityImmobilised enzymesBacteriaGramHost organism
Methods for obtaining surface expression of a desired protein or polypeptide in Gram-positive host organisms are provided. In addition, vectors useful in such methods as well as Gram-positive host organisms transformed with such vectors are disclosed.
Owner:INTREXON ACTOBIOTICS NV

Complex formation for the stabilisation and purification of proteins of interest

A method is described for altering the properties such as the accumulation, the stability and/or integrity, the subcellular localisation, the post-translational modifications, the ability to get purified, and the phase partitioning behaviour of natural or recombinant target proteins expressed in a host organism. The method involves the co-expression of natural or recombinant proteins along with a specific binding partner that sequesters the target recombinant protein into a complex. The binding partner is supplied as a separate protein allowing formation of intermolecular complexes or is fused to the protein of interest, allowing the formation of intramolecular complexes. The binding partner can also be used to alter the subcellular localisation without modifying the sequence or structure of the target protein itself. This can be achieved by either incorporating appropriate targeting signals into the binding ligand, which are then linked to the target protein through complex formation, or complex formation itself may alter the subcellular localisation. The same strategy can be used to provide an affinity tag to facilitate protein purification. The principle of the invention is demonstrated by the coexpression of an unstable antibody and its cognate antigen.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Isolated nucleotide molecule and method of sensing and killing of pathogenic microorganism

The present invention relates to an isolated nucleic acid molecule comprising (a) a first nucleotide sequence encoding a protein that detects the presence, amount or both of a pathogenic microorganism by forming a complex with a quorum sensing molecule produced by said pathogenic microorganism, (b) one or more second nucleotide sequence said one or more second nucleotide sequence being under control of a promoter that is induced by the complex of the protein encoded by the first nucleotide sequence and the quorum sensing molecule produced by said pathogenic microorganism and encoding (i) an antimicrobial peptide, wherein the antimicrobial peptide is effective against the pathogenic microorganism detected by the protein encoded by the first nucleotide sequence; and/or an antibiofilm enzyme wherein the antibiofilm enzyme is effective against the pathogenic microorganism detected by the protein encoded by the first nucleotide sequence; and (c) optionally a third nucleotide sequence encoding a protein that controls the motility of the host organism, wherein the protein that controls the motility of the host organism directs the motility of the host organism towards said pathogenic microorganism. A recombinant microorganism comprising the isolated nucleic acid molecule and a method of sensing and killing pathogenic microorganisms is also described.
Owner:NANYANG TECH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products