Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Thermobifida fusca" patented technology

Genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and method for constructing same

The invention relates to genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and a method for constructing the same, belonging to the field of the bioengineering technology. The genetically engineered bacteria are escherichia coli BL21 (DE3) which carry two recombinant plasmids, and the recombinant plasmids are respectively plasmid pSTV28 carrying the specific genes in the Alpha-hemolysin A (hly A) pathway and plasmid pET20b(+) containing the cutinase-hly As genes. The method for constructing the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase comprises the following steps: constructing two key recombinant plasmids and transforming the constructed recombinant plasmids in the escherichia coli BL21 (DE3) to obtain the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase. The cutinase is produced by using the genetically engineered bacteria through culturing liquid and inducing and expressing the cutinase. The cutinase Tfu_0883 for thermophilic monospore bacteria of Thermobifida Fusca WSH03-11 is used as the report protein. The shaking flask fermentation shows that the extracellular output of the cutinase is 306U / mL which is 1.7 times of the output of the cutinase which adopts the II-type secreting pathway in the preliminary working process in the research laboratory. The cutinase is secreted and expressed efficiently.
Owner:JIANGNAN UNIV

Glucose isomerase mutant and application thereof

The invention discloses a glucose isomerase mutant and application thereof, belonging to the technical field of enzyme genetic engineering and enzyme engineering. According to the invention, a high temperature glucose isomerase gene (NCBI coding: CP000088) is obtained from total DNA of thermobifida fusca, and after site-directed mutagenesis, high efficiency expression of the glucose isomerase gene with a high conversion rate is realized, with the plasmid pT7-7 or a vector that can express glucose isomerase as an expression vector and E. coli BL21 (DE3) or a bacterial strain that can express glucose isomerase as an expression host; the glucose isomerase gene has altogether 1158 nucleotide and encodes 385 amino acids; expression plasmid is constructed in the invention, glucose isomerase is expressed through conversion of bacteria or yeast, and an obtained recombinase mutant has activity of glucose isomerase and has a conversion rate of 60% at a temperature of 70 DEG C, 7% higher than the conversion rate of a parent; optimum temperature of the recombinant glucose isomerase is 80 DEG C, an optimum pH is 10, and the half life of the recombinant glucose isomerase at a temperature of 70 DEG C is no less than 30 h. The recombinant glucose isomerase is particularly applicable to production of F55 high-fructose syrup in the industry of foodstuffs.
Owner:JIANGNAN UNIV

Method of converting RB to RD by using cutinase under stepwise changing temperatures

The present invention provides a method to produce RD by using a cutinase to catalyze the esterification of RB under stepwise cooling temperatures, which is related to the field of biosynthesis of organic compounds. The method uses a cutinase from Thermobifida fusca to catalyze the esterification of RB and sophorose to produce RD. The stepwise cooling temperatures are used to reduce the heat inactivation of the enzyme as well as to improve the mass transfer. The method catalyzes the esterification of RB to produce RD in a solvent such as methanol, DMSO and DMF. The reaction is safe, efficient and highly selective. In addition, the method uses stepwise additions of substrate RB and cooling temperatures for the esterification reaction. In this way, it speeds up the initial reaction rate, increases the amount of solved RB as it is converted to RD, and improves the mass transfer to further increase the reaction speed. In summary, the method uses moderate reaction conditions, and has a high yield and a simple purification procedure.
Owner:JIANGNAN UNIV

Genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and method for constructing same

The invention relates to genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and a method for constructing the same, belonging to the field of the bioengineering technology. The genetically engineered bacteria are escherichia coli BL21 (DE3) which carry two recombinant plasmids, and the recombinant plasmids are respectively plasmid pSTV28 carrying the specific genes in the Alpha-hemolysin A (hly A) pathway and plasmid pET20b(+) containing the cutinase-hly As genes. The method for constructing the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase comprises the following steps: constructing two key recombinant plasmids and transforming the constructed recombinant plasmids in the escherichia coli BL21 (DE3) to obtain the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase. The cutinase is produced by using the genetically engineered bacteria through culturing liquid and inducing and expressing the cutinase. The cutinase Tfu_0883 for thermophilic monospore bacteria of Thermobifida Fusca WSH03-11 is used as the report protein. The shaking flask fermentation shows that the extracellular output of the cutinase is 306U / mL which is 1.7 times of the output of the cutinase which adopts the II-type secreting pathway in the preliminary working process in the research laboratory. The cutinase is secreted and expressed efficiently.
Owner:JIANGNAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products