Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

554 results about "Oxygenate" patented technology

Oxygenated chemical compounds contain oxygen as a part of their chemical structure. The term usually refers to oxygenated chemical compounds added to fuels. Oxygenates are usually employed as gasoline additives to reduce carbon monoxide and soot that is created during the burning of the fuel. Compounds related to soot, such as polyaromatic hydrocarbons (PAHs) and nitrated PAHs, are also reduced.

Conversion of oxygenate to propylene using moving bed technology and a separate heavy olefin interconversion step

The average propylene cycle yield of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the catalytic OTP reaction step in lieu of the fixed bed technology of the prior art; 2) a separate heavy olefin interconversion step using moving bed technology and operating at an inlet temperature at least 15° C. higher than the maximum temperature utilized in the OTP reaction step; 3) C2 olefin recycle to the OTP reaction step; and 4) a catalyst on-stream cycle time of 700 hours or less. These provisions hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield for each cycle near or at essentially start-of-cycle levels.
Owner:UOP LLC

Processes for converting oxygenates to olefins at reduced volumetric flow rates

InactiveUS20060020155A1Reduction in effluent volumetric flow rateMolecular sieve catalystCatalystsSyngasMolecular sieve
This invention provides processes for forming light olefins from methanol and / or from syngas through a dimethyl ether intermediate. Specifically, the invention is to converting methanol and / or syngas to dimethyl ether and water in the presence of a first catalyst, preferably comprising γ-alumina, and converting the dimethyl ether to light olefins and water in the presence of a second catalyst, preferably a molecular sieve catalyst composition.
Owner:EXXONMOBIL CHEM PAT INC

Blended compression-ignition fuel containing light synthetic crude and blending stock

This invention is a composition of matter useful as a compression-ignition fuel. The composition has from about 30 to about 95 mass % of a light synthetic crude or syncrude, preferably from Fischer-Tropsch synthesis or related processes, and from about 5 to about 70 mass % of a blending stock that improves one or more desirable fuel property(s) including but not limited to pour point temperature, viscosity and emissions generated during combustion in a diesel engine. The blend stock preferably has an average molecular weight less than the average molecular weight of the light syncrude. Preferred blending stocks include hydrocarbons and oxygenates, such as alcohols, and ethers, having average molecular weights less than 200, preferably less than 160. The composition may optionally also contain pour point depressants, cetane improvers, carbon-containing compounds which react with water, and / or emulsifiers.
Owner:REG SYNTHETIC FUELS LLC +1

Integrating a methanol to olefin reaction system with a steam cracking system

The present invention provides an integrated system for producing ethylene and propylene from an oxygenate to olefin (OTO) reaction system and a steam cracking system. In a preferred embodiment, at least a portion of an effluent stream from a steam cracking furnace is combined with at least a portion of an effluent stream from an OTO reaction system. Preferably the combined effluent stream is processed by one or more quench units, compression units, and / or fractionation columns. By integrating a steam cracking system with an OTO reaction system, equipment count can be reduced at a significant commercial savings. Compressor efficiency per pound of ethylene and propylene can also be advantageously increased over conventional steam cracking systems. Moreover, the amount of pollutants produced per pound of ethylene and propylene produced can be significantly reduced over the amount of pollutants produced per pound of ethylene and propylene produced in a steam cracking system.
Owner:EXXONMOBIL CHEM PAT INC

Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst

The average propylene cycle selectivity of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of the fixed bed technology of the prior art; 2) a hydrothermally stabilized and dual-functional catalyst system comprising a molecular sieve having dual-function capability dispersed in a phosphorus-modified alumina matrix containing labile phosphorus and / or aluminum anions; and 3) a catalyst on-stream cycle time of 400 hours or less. These provisions stabilize the catalyst against hydrothermal deactivation and hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield near or at essentially start-of-cycle levels.
Owner:UOP LLC

Liquid fuel compositions

The present invention provides a liquid fuel composition comprising a distillation fraction of a component having at least one C4+ compound derived from a water-soluble oxygenated hydrocarbon prepared by a method comprising:providing water and a water-soluble oxygenated hydrocarbon comprising a C1+O1+ hydrocarbon in an aqueous liquid phase and / or a vapor phase;providing H2;catalytically reacting in the liquid and / or vapor phase the oxygenated hydrocarbon with the H2 in the presence of a deoxygenation catalyst at a deoxygenation temperature and deoxygenation pressure to produce an oxygenate comprising a C1+O1-3 hydrocarbon in a reaction stream; andcatalytically reacting in the liquid and / or vapor phase the oxygenate in the presence of a condensation catalyst at a condensation temperature and condensation pressure to produce the C4+ compound,wherein the C4+ compound comprises a member selected from the group consisting of C4+ alcohol, C4+ ketone, C4+ alkane, C4+ alkene, C5+ cycloalkane, C5+ cycloalkene, aryl, fused aryl, and a mixture thereof;wherein the liquid fuel composition is selected from:a gasoline composition having an initial boiling point in the range of from 15° C. to 70° C. (IP123), a final boiling point of at most 230° C. (IP123), a RON in the range of from 85 to 110 (ASTM D2699) and a MON in the range of from 75 to 100 (ASTM D2700);a diesel fuel composition having an initial boiling point in the range of from 130° C. to 230° C. (IP123), a final boiling point of at most 410° C. (IP123) and a cetane number in the range of from 35 to 120 (ASTM D613); anda kerosene composition having an initial boiling point in the range of from 80 to 150° C., a final boiling point in the range of from 200 to 320° C. and a viscosity at −20° C. in the range of from 0.8 to 10 mm2 / s (ASTM D445).
Owner:SHELL USA INC

Biomass treatment of organic waste materials in fuel production processes to increase energy efficiency

A method, system, apparatus and program extracts energy from organic residual materials produced by the manufacturing of biofuels. Energy is extracted from the biofuels residuals using anaerobic bioconversion to produce a fuel for use in the manufacturing process for producing synthetic biofuel or as an additional energy product for sale comprises: providing at least one bioconversion tank for conversion of organic waste material, the bioconversion tank containing an active biomass comprising at least one bacteria that decomposes organic material; providing at least one inlet to the bioconversion for organic material; a processor that receives and stores information on: the status of chemical oxygen demand of the active biomass; and the oxygen provision capability of any organic material that can be fed into the bioconversion tank through an inlet; a mass flow control system controlled by the processor which feeds at least one organic material through an inlet at a rate based at least in part upon the status of chemical oxygen demand in the bioconversion tank as recognized by the processor.
Owner:NBE

Conversion of oxygenate to propylene with selective hydrogen treatment of heavy olefin recycle stream

The average cycle propylene selectivity of an oxygenate to propylene (OTP) process using one or more fixed or moving beds of a dual-function oxygenate conversion catalyst with recycle of one or more C4+ olefin-rich fractions is substantially enhanced by the use of selective hydrotreating technology on these C4+ olefin-rich recycle streams to substantially eliminate detrimental coke precursors such as dienes and acetylenic hydrocarbons. This hydrotreating step helps hold the build-up of detrimental coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling a substantial improvement in propylene average cycle yield. The propylene average cycle yield improvement enabled by the present invention over that achieved by the prior art using the same or a similar catalyst system but without the use of the hydrotreating step on the C4+ olefin-rich recycle stream is of the order of about 1.5 to 5.5 wt-% or more.
Owner:UOP LLC

Conversion of oxygenate to olefins with staged injection of oxygenate

A system and process for producing olefins from oxygenate, e.g., methanol or dimethylether, includes a fluidized bed reaction zone that provide contact between the oxygenate and a molecular sieve catalyst such as ZSM-34 or SAPO-34. Improved ethylene selectivity is realized when the oxygenate is stagewise injected into the fluidized bed at one or more locations along the axial direction of the fluidized bed reaction zone.
Owner:EXXONMOBIL CHEM PAT INC

Process for separating carbon dioxide from an oxygenate-to-olefin effluent stream

The present invention is a process for removal of carbon dioxide from a reactor effluent stream comprising water, carbon dioxide and olefin(s), where a portion of the carbon dioxide is removed in a quenching step with a quench medium and more carbon dioxide is removed by contacting the quenched effluent stream with an alkaline stream. A portion of the alkaline stream is added to the quench medium.
Owner:EXXONMOBIL CHEM PAT INC

Process and integrated system for the preparation of a lower olefin product

InactiveUS20110112344A1High conversion of feedstockOptimize allocationThermal non-catalytic crackingHydrogenChemistryEffluent
A process for the preparation of an olefin product comprising ethylene and / or propylene, which process comprises the steps ofa) cracking a paraffin feedstock comprising C2-C5 paraffins under cracking conditions in a cracking zone to obtain a cracker effluent comprising olefins;b) converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with an oxygenate conversion catalyst under oxygenate conversion conditions, to obtain a conversion effluent comprising ethylene and / or propylene;c) combining at least part of the cracker effluent and at least part of the conversion effluent to obtain a combined effluent, and separating an olefin product stream comprising ethylene and / or propylene from the combined effluent, wherein the cracker effluent and / or the conversion effluent comprises a C4 portion comprising unsaturates, and wherein the process further comprises at least partially hydrogenating at least part of the C4 portion, to obtain an at least partially hydrogenated C4 feedstock; and recycling at least part of the at least partially hydrogenated C4 feedstock as recycle feedstock to step a) and / or step b), and an integrated system for performing the process.
Owner:SHELL OIL CO

Conversion process

The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
Owner:EXXONMOBIL CHEM PAT INC

Methanol and ethanol production for an oxygenate to olefin reaction system

The present invention provides various processes for producing light olefins from methanol and ethanol, optionally in a mixed alcohol stream. In one embodiment, the invention includes directing a first syngas stream to a methanol synthesis zone to form methanol and directing a second syngas stream and methanol to a homologation zone to form ethanol. The methanol and ethanol are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC

Integrating an air separation unit into an oxygenate-to-olefins reaction system

This invention provides an integrated system and process for forming light olefins and polymers from oxygenates, and optionally from natural gas. The integrated system includes an air separation unit, which separates air components into an oxygen stream and a nitrogen stream, and which also forms a compressed air stream. According to the present invention, the oxygen stream, the nitrogen stream and / or the compressed air stream from the air separation unit may serve as a reactant in syngas generation, as a regeneration medium in the methanol-to-olefins reaction system, as a fluidizing stream, as a blanketing medium, as a stripping medium, as instrument air, and / or as a reactant in a sulfur removal unit.
Owner:EXXONMOBIL CHEM PAT INC

Process for converting a hydrocarbon to an oxygenate or a nitrile

This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
Owner:VELOCYS CORPORATION

Transportation fuels from biomass oxygenates

Oxygenate feedstocks derived from biomass are converted to a variety of fuels including gas, jet, and diesel fuel range hydrocarbons. General methods are provided including hydrolysis, dehydration, hydrogenation, condensation, oligomerization, and / or a polishing hydrotreating.
Owner:PHILLIPS 66 CO

Process for producing olefins

A process is described for producing an olefins stream from a first vapor effluent stream from an oxygenate to olefin conversion reaction, said first vapor effluent stream comprising C2 and C3 olefins, C4 hydrocarbons, and C2 to C6 carbonyl compounds. In the process, the temperature and pressure of the first vapor effluent stream are adjusted to produce a second vapor effluent stream having a pressure ranging from about 100 psig to about 350 psig (790 to 2514 kPa) and a temperature ranging from about 70° F. to about 120° F. (21 to 49° C.), said second vapor effluent stream containing about 50 wt. % or more C4 hydrocarbons based upon the total weight of C4 hydrocarbons in the first vapor effluent stream. The second vapor effluent stream is then washed with a liquid alcohol-containing stream to produce a third vapor effluent stream, whereafter the third vapor effluent stream is washed with liquid water to provide a fourth vapor effluent stream comprising the C2 and C3 olefins and about 1.0 wt. % or less C2 to C6 carbonyl compounds.
Owner:EXXONMOBIL CHEM PAT INC

Production of chemicals and fuels from biomass

The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to fuels and chemicals. The invention includes methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Owner:VIRENT

Heat recovery in an olefin production process

Disclosed is a process for recovering heat in an oxygenate to olefin (“OTO”) production process. The process includes removing heat while maintaining the temperature of an effluent stream that comprises solid particles (typically catalyst particles) and a gas phase comprising prime olefins from an OTO reactor above the dew point temperature of the effluent stream. The process further includes washing the effluent stream in solids wash to remove the solid particles from the gas phase into a liquid wash medium.
Owner:EXXONMOBIL CHEM PAT INC

Carbonylation process

Disclosed is a carbonylation process for the production of carboxylic acids, carboxylic acid esters and / or carboxylic acid anhydrides wherein a carbonylation feedstock compound selected from one or more organic oxygenates such as alcohols, ethers, and esters is contacted with carbon monoxide in the presence of a carbonylation catalyst and one or more onium compounds. The carbonylation process differs from known carbonylation processes in that a halide compound such as a hydrogen halide, typically hydrogen iodide, and / or alkyl halide, typically methyl iodide, extraneous or exogenous to the carbonylation process is not fed or supplied separately to the process.
Owner:EASTMAN CHEM CO

Wet scrubbing and recycle of effluent-contaminating catalyst particles in an oxygenate-to-olefin process

The economics of a catalytic process using a fluidized conversion zone and a relatively expensive catalyst for converting an oxygenate to light olefins are substantially improved by recovering and recycling effluent contaminating catalyst particles from the product effluent stream withdrawn from the conversion zone which are present despite the use of one or more vapor-solid cyclone separating means to clean up this effluent stream. The contaminating catalyst particles are separated from this product effluent stream using a wet scrubbing zone and an optional dewatering zone to recover a slurry containing the contaminated particles which, quite surprisingly, can be successfully directly recycled to the oxygenate conversion zone or to the associated catalyst regeneration zone without loss of any substantial amount of catalytic activity thereby decreasing the amount of fresh catalyst addition required to make up for this source of catalyst loss.
Owner:UOP LLC

Removing carbon dioxide from an oxygenate to olefins reaction effluent

The present invention provides processes for removing CO2 from an effluent stream derived from an oxygenate to olefins reaction system. In one embodiment, the invention comprises contacting the effluent stream with a first CO2 removal medium in a first CO2 removal zone under conditions effective to remove a first portion of the CO2 from the effluent stream and form a first CO2 depleted stream. The first CO2 depleted stream is contacted with a second CO2 removal medium in a second CO2 removal zone under conditions effective to remove a second portion of the CO2 from the first CO2 depleted stream and form a second CO2 depleted stream comprising less than about 0.5 vppm CO2.
Owner:EXXONMOBIL CHEM PAT INC

Production of stable olefinic fischer tropsch fuels with minimum hydrogen consumption

The present invention relates to a stable, low sulfur, olefinic distillate fuel blend component derived from a Fischer-Tropsch process and a process for producing this stable, low sulfur, olefinic distillate fuel blend component. The stable, low sulfur, olefinic distillate fuel comprises olefins in an amount of 2 to 80 weight percent, non-olefins in an amount of 20 to 98 weight percent wherein the non-olefins are predominantly paraffins, oxygenates in an amount of less than 1 weight percent, and sulfur in an amount of less than 10 ppm by weight. A distillate fuel comprising the above blend component forms less than 5 ppm peroxides after storage at 60° C. for four weeks.
Owner:CHEVROU USA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products