Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

482 results about "Clock tree" patented technology

Duty-cycle adjustable buffer and method and method for operating same

A duty-cycle adjustable buffer and a method for operating such buffer can be applied to a clock tree circuit for providing an adjustable duty cycle. The duty-cycle adjustable buffer includes a first inverter and a second inverter connected with each other in series. Each of the first inverter and the second inverter includes a plurality of controlled current charging paths and a plurality of controlled current discharging paths, wherein at least one controlled current charging path and at least one controlled current discharging path of the first inverter and the second inverter are conducted. The timing of the rising edge and falling edge of a clock signal is dynamically adjusted so as to dynamically altering the duty cycle of the clock signal.
Owner:VIA TECH INC

Variably delayable transmission of packets between independently clocked source, intermediate, and destination circuits while maintaining orderly and timely processing in one or both of the intermediate and destination circuits

In a system having independently-clocked job-performing circuits (e.g., payload processors) and independently-clocked job-ordering circuits (e.g., request and payload suppliers), coordinating mechanisms are provided for coordinating exchanges between the independently-clocked circuits. The coordinating mechanisms include those that use transmitted time-stamps for scheduling contention-free performances within the job-performing circuits of requested jobs. The coordinating mechanisms additionally or alternatively include static and dynamic rate constraining means that are configured to prevent a faster-clocked one of the independently-clocked circuits from overwhelming a more slowly-clocked other of the independently-clocked circuits. In one implementation, independently-clocked telecommunication-shelves house a distributed set of line cards and switch cards. An asynchronous interconnect is provided between the independently-clocked shelves for carrying job requests and payload data between the distributed line cards and the distributed switch cards. The multi-shelf system is scalable and robust because additional or replacement line and switch cards may be inserted into one or another of the independently-clocked shelves as desired and because a unified clock-tree is not needed for synchronizing activities within the interconnected, but independently clocked shelves.
Owner:MICROSEMI STORAGE SOLUTIONS US INC

Method and apparatus for clock gating clock trees to reduce power dissipation

A clock gating circuit reduces the power dissipation in a digital circuit including at least one functional block by gating the clock signal at an input to a clock tree feeding the functional block. The clock gating circuit includes a logic gate that receives a clock signal and a clock disable signal generated by the functional block, and gates the clock signal at the input to the clock tree feeding the functional block. Further, a global signal generator is provided to transmit a global signal to each of the functional blocks to prevent the generation of clock disable signals, when necessary, such as during testing of chips.
Owner:KEYSIGHT TECH

Method and apparatus for generating a variation-tolerant clock-tree for an integrated circuit chip

One embodiment of the present invention relates to a process that generates a clock-tree on an integrated circuit (IC) chip. During operation, the process starts by receiving a placement for a chip layout, where the placement includes a set of registers at fixed locations in the chip layout. The process then generates a timing criticality profile for the set of registers, wherein the timing criticality profile specifies timing criticalities between pairs of registers in the set of registers. Next, the process clusters the set of registers based on the timing criticality profile to create a clock-tree for the set of registers. By clustering the registers based on the timing criticality profile, the process facilitates using commonly-shared clock paths in the clock-tree to provide clock signals to timing critical register pairs.
Owner:SYNOPSYS INC

Variably delayable transmission of packets between independently clocked source, intermediate, and destination circuits while maintaining orderly and timely processing in one or both of the intermediate and destination circuits

In a system having independently-clocked job-performing circuits (e.g., payload processors) and independently-clocked job-ordering circuits (e.g., request and payload suppliers), coordinating mechanisms are provided for coordinating exchanges between the independently-clocked circuits. The coordinating mechanisms include those that use transmitted time-stamps for scheduling contention-free performances within the job-performing circuits of requested jobs. The coordinating mechanisms additionally or alternatively include static and dynamic rate constraining means that are configured to prevent a faster-clocked one of the independently-clocked circuits from overwhelming a more slowly-clocked other of the independently-clocked circuits. In one implementation, independently-clocked telecommunication-shelves house a distributed set of line cards and switch cards. An asynchronous interconnect is provided between the independently-clocked shelves for carrying job requests and payload data between the distributed line cards and the distributed switch cards. The multi-shelf system is scalable and robust because additional or replacement line and switch cards may be inserted into one or another of the independently-clocked shelves as desired and because a unified clock-tree is not needed for synchronizing activities within the interconnected, but independently clocked shelves.
Owner:MICROSEMI STORAGE SOLUTIONS US INC

Scan test design method, scan test circuit, scan test circuit insertion cad program, large-scale integrated circuit and mobile digital equipment

In scan test circuit design, a plurality of flipflop circuits (102a, 102b or 102c) driven with each of final-stage elements 101f of a clock tree T are connected in series, to form a sub-scan chain. Also, sub-scan chains smallest in the relative difference in the number of stages of delay elements existing from the clock supply point S of the clock tree T (i.e., sub-scan chains different by one stage) are connected to each other. Further, sub-scan chains are connected so that data shift be made from a flipflop circuit larger in clock delay to a flipflop circuit smaller in clock delay. This reduces the number of delay elements inserted in data lines of a shift register for hold time guarantee in shift operation of the scan shift register, and suppresses power consumption.
Owner:PANASONIC CORP

Optimization method of capturing power consumption in scan test

The invention discloses an optimization method of capturing power consumption in a scan test. The optimization method of capturing power consumption in the scan test comprises the following steps: generating a netlist with a scan chain; grouping gating control clock units; designing a power constrain unit; combining with the generated netlist with the scan chain, conducting chip layout design which comprises a floorpan, a layout, a clock tree sythesis and wiring; reading a gate-level netlist with a scan structure, a process library, a timing sequence constrain file and a test protocol into an automatic test vector generating tool after the chip layout design is completed, conducting testability design rule checking, and generating a test vector; and conducting gate-level simulation to the test vector generated. By means of the optimization method of capturing the power consumption in the scan test, the capturing power consumption in a test process can be reduced significantly, the reduction of coverage or the sharp increase of the quantity of test vectors is not generated, changing of a test design process is needless, and realization is easy.
Owner:JIANGSU SEUIC TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products