Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

208results about How to "Reduce recovery" patented technology

Arthroplasty devices and related methods

ActiveUS20070226986A1Enhance alignmentReduce procedure time and recovery timeDiagnosticsSurgical manipulatorsSacroiliac jointBiomedical engineering
Arthroplasty jigs, arthroplasty jig blanks, and related methods and devices are disclosed. Some variations of the methods comprise forming an arthroplasty jig from a near-shape arthroplasty jig blank, where the near-shape arthroplasty jig blank has at least one feature specific to a target site to be matched by the arthroplasty jig. Certain of the methods comprise forming an arthroplasty jig having a first configuration from a near-shape arthroplasty jig blank having a second configuration approximating the first configuration. Some of the methods comprise forming a near-shape arthroplasty jig blank, where the near-shape arthroplasty jig blank is configured to be formed into an arthroplasty jig, and the near-shape arthroplasty jig blank has at least one feature specific to a target site to be matched by the arthroplasty jig.
Owner:HOWMEDICA OSTEONICS CORP

Fluid transfer assembly for pharmaceutical delivery system and method for using same

The present invention provides a transfer assembly for transferring a fluid between a vessel and a vial and a method for using same. The vial may be a maximum recovery vial. The vessel has a body with an open end and a slidable piston positioned within the body through the open end. The maximum recovery vial has an inner chamber with an open end and a closed end and a penetrable seal covering the open end of the inner chamber. The transfer assembly includes a housing having first and second open ends and a bore extending between the first and second open ends. The housing is connectable to the piston. The transfer assembly also includes a conduit having first and second ends and first and second apertures adjacent to the first and second ends, respectively. The conduit is longitudinally slidable within the bore between a retracted position in which the first aperture is positioned within at least one of the housing and the piston when the housing is connected to the piston, and an activated position in which the first aperture protrudes through the piston into the body of the vessel when the housing is connected to the piston. The transfer assembly also includes a vial socket assembly having a vial socket and a hollow piercing member. The vial socket is sized and shaped for receiving and engaging at least a portion of the maximum recovery vial including the penetrable seal. The hollow piercing member has a first open end in fluid communication with the conduit and a second open end for piercing the penetrable seal of the maximum recovery vial. The hollow piercing member is sized to extend substantially the full length of the inner chamber of the maximum recovery vial when the maximum recovery vial is fully engaged in the vial socket. The vial socket assembly is moveable longitudinally relative to the housing in concert with the conduit.
Owner:DUOJECT MEDICAL SYSTEMS INC

Fluid transfer assembly for pharmaceutical delivery system and method for using same

The present invention provides a transfer assembly for transferring a fluid between a vessel and a vial and a method for using same. The vial may be a maximum recovery vial. The vessel has a body with an open end and a slidable piston positioned within the body through the open end. The maximum recovery vial has an inner chamber with an open end and a closed end and a penetrable seal covering the open end of the inner chamber. The transfer assembly includes a housing having first and second open ends and a bore extending between the first and second open ends. The housing is connectable to the piston. The transfer assembly also includes a conduit having first and second ends and first and second apertures adjacent to the first and second ends, respectively. The conduit is longitudinally slidable within the bore between a retracted position in which the first aperture is positioned within at least one of the housing and the piston when the housing is connected to the piston, and an activated position in which the first aperture protrudes through the piston into the body of the vessel when the housing is connected to the piston. The transfer assembly also includes a vial socket assembly having a vial socket and a hollow piercing member. The vial socket is sized and shaped for receiving and engaging at least a portion of the maximum recovery vial including the penetrable seal. The hollow piercing member has a first open end in fluid communication with the conduit and a second open end for piercing the penetrable seal of the maximum recovery vial. The hollow piercing member is sized to extend substantially the full length of the inner chamber of the maximum recovery vial when the maximum recovery vial is fully engaged in the vial socket. The vial socket assembly is moveable longitudinally relative to the housing in concert with the conduit.
Owner:DUOJECT MEDICAL SYSTEMS INC

Chemical analyzer and cartridge for chemical analyzer

A chemical analyzer has a rotatable holding disk, test cartridges disposed thereon, and a detector. The test cartridge includes a base plate having vessels and flow channels. The base plate is covered with a cover for covering the vessels and flow channels. The holding disk is rotated to generate centrifugal force, causing a fluid to be moved from one vessel at the inner peripheral side with respect to a rotation axis of the holding disk to another vessel at the outer peripheral side with respect to the rotation axis via the flow channel. In the test cartridge, at least one reagent port is formed in the base plate, and a closed vessel containing a reagent is placed in the reagent port. The closed vessel is a microcapsule, a plastic closed vessel, or a screw-in closed vessel, for example.
Owner:HITACHI HIGH-TECH CORP

Viscoelastic surfactant rheology modification

A method for shortening the shear recovery time of cationic, zwitterionic, and amphoteric viscoelastic surfactant fluid systems by adding an effective amount of an amphiphilic polymeric rheology enhancer containing at least one portion that is a partially hydrolyzed polyvinyl ester or partially hydrolyzed polyacrylate. The rheology enhancer also increases fluid viscosity and very low rheology enhancer concentration is needed. Preferred surfactants are betaines and quaternary amines. The fluids are useful in oilfield treatments, for example fracturing and gravel packing.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products