Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

51results about How to "Minimize capacitance" patented technology

Method and apparatus for forming an SOI body-contacted transistor

ActiveUS20050127442A1Minimize parasitic capacitanceMinimize gate electrode leakageTransistorSolid-state devicesBody contactParasitic capacitance
A method for forming a silicon-on-insulator transistor (80) includes forming an active region (82) overlying an insulating layer (122), wherein a portion of the active region provides an intrinsic body region (126). A body tie access region (128) is also formed within the active region, overlying the insulating layer and laterally disposed adjacent the intrinsic body region, making electrical contact to the intrinsic body region. A gate electrode (134) is formed overlying the intrinsic body region for providing electrical control of the intrinsic body region, the gate electrode extending over a portion (137) of the body tie access region. The gate electrode is formed having a substantially constant gate length (88) along its entire width overlying the intrinsic body region and the body tie access region to minimize parasitic capacitance and gate electrode leakage. First and second current electrodes (98,100) are formed adjacent opposite sides of the intrinsic body region. In addition, a body tie diffusion (130) is formed within the active region and laterally offset from the body tie access region and electrically coupled to the body tie access region.
Owner:NORTH STAR INNOVATIONS

Solid-state relay

A solid state relay composed of a series connected pair of LDMOSFETs has a minimized output capacitance. Each LDMOSFET is configured to have a silicon layer of a first conductive type, a drain region of the first conductive type diffused in the top surface of the silicon layer, a well region of a second conductive type diffused in the silicon layer in a laterally spaced relation from the drain region, and a source region of the first conductive type diffused within the well region to define a channel extending between the source region and a confronting edge of the well region along the top surface of the silicon layer. Each LDMOSFET is of an SOI (Silicon-On-Insulator) structure composed of a silicon substrate placed on a supporting plate, a buried oxide layer on the silicon substrate, and the silicon layer on the buried oxide layer. The well region is diffused over the full depth of the silicon layer to have its bottom in contact with the buried oxide layer, so that the well region forms with the silicon layer a P-N interface only at a small area adjacent the channel. Because of this reduced P-N interface and also because of the buried oxide layer exhibiting a much lower inductive capacitance than the silicon layer, it is possible to greatly reduce a drain-source capacitance for minimizing the output capacitance of the relay in the non-conductive condition.
Owner:CORNELL RES FOUNDATION INC

Method and Apparatus for Reducing the Clock Kick-Back of ADC Comparators While Maintaining Transistor Matching Behavior

The core concept of this ADC is the high-speed fully-differential comparators which are clocked at 2.64 GHz and used in a 60 GHz transceiver. The comparator consists of a pre-amplifier stage, a capture stage, a regeneration cell and an output latch. The pre-amplifier stage is not clocked; therefore, the pre-amplifier stage does not suffer initialization and transient behavior effects when the clock signal switches state. The transient response of being enabled and disabled is eliminated. Instead, a capture stage transfers the contents of the pre-amplifier stage into a memory regeneration stage. The capture stage is clocked by pulses that are timed to minimize the clock kick-back generated by the memory regeneration stage. The clock kick-back is reduced even when many comparators are coupled to the PGA. The comparators, instead of having extra dummy fingers, are also aligned right next to each other to minimize the mismatching layout effect.
Owner:TENSORCOM

Voltage-controlled oscillator

With a variable capacitor including a load capacitor of an oscillation circuit having a feedback resistor 1, an inverter 2, and a crystal oscillator 3, and a static capacitance generated between a drain terminal and a gate terminal of MOS transistors 4 and 5, in which source and backgate terminals are shorted to each other, a serial connection of a DC cut capacitor 9, 10 and a variable capacitors (MOS transistor) 4 and 5 is formed between one end and the other end of the crystal oscillator 3. For example, a threshold voltage control signal of the MOS transistors 4 and 5 is input to the drain terminal through a high-frequency elimination resistor 11, 12, and is input to the source-backgate terminal through a high-frequency elimination resistor 7, 8. In addition, a signal obtained by overlapping a temperature characteristic compensation signal and a threshold voltage control signal of the MOS transistor 4, 5 is input to the gate terminal. Accordingly, it is possible to indiscriminately determine an output bias of a temperature compensation control circuit or an external voltage frequency control circuit.
Owner:COLLABO INNOVATIONS INC

Solid-state relay

A solid state relay composed of a series connected pair of LDMOSFETs has a minimized output capacitance. Each LDMOSFET is configured to have a silicon layer of a first conductive type, a drain region of the first conductive type diffused in the top surface of the silicon layer, a well region of a second conductive type diffused in the silicon layer in a laterally spaced relation from the drain region, and a source region of the first conductive type diffused within the well region to define a channel extending between the source region and a confronting edge of the well region along the top surface of the silicon layer. Each LDMOSFET is of an SOI (Silicon-On-Insulator) structure composed of a silicon substrate placed on a supporting plate, a buried oxide layer on the silicon substrate, and the silicon layer on the buried oxide layer. The well region is diffused over the full depth of the silicon layer to have its bottom in contact with the buried oxide layer, so that the well region forms with the silicon layer a P-N interface only at a small area adjacent the channel. Because of this reduced P-N interface and also because of the buried oxide layer exhibiting a much lower inductive capacitance than the silicon layer, it is possible to greatly reduce a drain-source capacitance for minimizing the output capacitance of the relay in the non-conductive condition.
Owner:MATSUSHITA ELECTRIC WORKS LTD

Linear low capacitance overvoltage protection circuit

A bipolar semiconductor overvoltage protection circuit presents less capacitance to a communication line. The overvoltage protection circuit includes an overvoltage protection device that is biased with a voltage to not only reduce the capacitance thereof, but also to reduce the change in capacitance as a function of frequency. Changes in communication line voltages thus change the capacitance of the overvoltage protection device less, resulting in the ability to allow the transmission of high capacity data protocols with reduced error rates.
Owner:LITTELFUSE INC

Metal line layout of an integrated circuit

A metal line layout which includes two separate control spaces to address capacitive issues along speed sensitive pathways in an integrated circuit structure without negatively impacting Werner Fill processing. One control space (i.e., DRCgap1) is for decreasing the spacing between various metal features to standardize such spacing, and a second control space (i.e., DRCgap2) is for addressing capacitance issues along speed sensitive pathways. Between speed sensitive pathways, spacing of added metal features provided to long parallel metal lines are maintained at the second control spacing DRCgap2. Spaces at the ends of such long parallel metal lines are reduced to the first control spacing DRCgap1 in order to best fill three-way-intersections (TWIs) with subsequent depositions.
Owner:MICRON TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products