Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

798results about "Refining by aromatic hydrocarbon hydrogenation" patented technology

Vegetable oil hydroconversion process

A vegetable oil hydroconversion process is described for hydroconverting a mixture between 1 to 75% in mass of oil or natural fat (1) and the rest mineral oil (2), hydroconverted in a reactor (205) under conditions of pressure, temperature, hydrogen (flow 119) and sulfide catalyst of Groups VIII and VIB, obtaining, after sour water separation (flow 111) and rectification (flow 112), a specified diesel product (4). The product (4) has an ITQ / DCN (cetane number) higher than a product obtained from a pure mineral based oil would have, lower density than from a base oil and a plugging point depending on the mineral oil flow, as well as greater oxidation stability than the base oil.
Owner:PETROLEO BRASILEIRO SA (PETROBRAS)

Hydrocarbon resid processing

The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is severely hydrotreated and passed to a steam cracker to obtain an olefins product.
Owner:EXXONMOBIL CHEM PAT INC

Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system

An ebullated bed hydroprocessing system, and also a method for upgrading a pre-existing ebullated bed hydroprocessing system, involves introducing a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into an ebullated bed reactor. The colloidal or molecular catalyst is formed by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst in situ. The improved ebullated bed hydroprocessing system includes at least one ebullated bed reactor that employs both a porous supported catalyst and the colloidal or molecular catalyst to catalyze hydroprocessing reactions involving the feedstock and hydrogen. The colloidal or molecular catalyst provides catalyst in what would otherwise constitute catalyst free zones within the ebullated bed hydroprocessing system. Asphaltene or other hydrocarbon molecules too large to diffuse into the pores of the supported catalyst can be upgraded by the colloidal or molecular catalyst. A slurry phase reactor may be positioned upstream from one or more ebullated bed reactors or converted from a pre-existing ebullated bed reactor.
Owner:HEADWATERS TECH INNOVATION LLC

Resid processing for steam cracker feed and catalytic cracking

The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is treated by hydroprocessing and visbreaking and then passed to a steam cracker to obtain a product comprising olefins.
Owner:EXXONMOBIL CHEM PAT INC

Two phase hydroprocessing

A process where the need to circulate hydrogen through the catalyst is eliminated. This is accomplished by mixing and / or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is “high” relative to the oil feed. The type and amount of diluent added, as well as the reactor conditions, can be set so that all of the hydrogen required in the hydroprocessing reactions is available in solution. The oil / diluent / hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required, therefore, hydrogen recirculation is avoided and trickle bed operation of the reactor is avoided. Therefore, the large trickle bed reactors can be replaced by much smaller tubular reactor.
Owner:EI DU PONT DE NEMOURS & CO

Hydrogenation method and petrochemical process

The present invention provides a hydrogenation method capable of converting cracked kerosene into the raw materials for petrochemical cracking having a high thermal decomposition yield by a hydrogenation reaction. The present invention is a petrochemical process for producing at least any of ethylene, propylene, butane, benzene or toluene by carrying out a thermal decomposition reaction at least using naphtha for the main raw material, wherein cracked kerosene produced from a thermal cracking furnace is hydrogenated using a Pd or Pt catalyst in a two-stage method consisting of a first stage (I), in which a hydrogenation reaction is carried out within the range of 50 to 180° C., and a second stage (II), in which a hydrogenation reaction is carried out within the range of 230 to 350° C., followed by re-supplying all or a portion of these hydrogenated hydrocarbons to a thermal cracking furnace.
Owner:SHOWA DENKO KK

Metal aromatic hydrosaturation catalyst

A metal-type catalyst for hydrosaturating arylhydrocarbon is composed of the carrier containing porous silicon oxide-aluminium oxide and the hydrogenating active components. Said porous silicon oxide-aluminium oxide has the crystal type chosen from gamma, etc, theta, delta and X ones of aluminium oxide. Its advantages are easy preparing, high resistance to sulfur, and high hydrogenating activity.
Owner:CHINA PETROLEUM & CHEM CORP +1

Resid processing for steam cracker feed and catalytic cracking

The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is treated by hydroprocessing and visbreaking and then passed to a steam cracker to obtain a product comprising olefins.
Owner:EXXONMOBIL CHEM PAT INC

Process for isomerization dewaxing of hydrocarbon streams

A process for isomerization dewaxing of a hydrocarbon feed which includes contacting the hydrocarbon feed with a large pore size, small crystal size, crystalline molecular sieve and an intermediate pore size, small crystal size, crystalline molecular sieve to produce a dewaxed product with a reduced pour point and a reduced cloud point. In a preferred embodiment, the feed is contacted with the molecular sieves sequentially, first with the large pore sieve followed by the intermediate pore sieve.
Owner:EXXON RES & ENG CO

Multigrade engine oil prepared from Fischer-Tropsch distillate base oil

A multigrade engine oil meeting the specifications for SAE J300 revised June 2001 requirements and a process for preparing it, said engine oil comprising (a) between about 15 to about 94.5 wt % of a hydroisomerized distillate Fischer-Tropsch base oil characterized by (i) a kinematic viscosity between about 2.5 and about 8 cSt at 100° C., (ii) at least about 3 wt % of the molecules having cycloparaffin functionality, and (iii) a ratio of weight percent molecules with monocycloparaffin functionality to weight percent of molecules with multicycloparaffin functionality greater than about 15; (b) between about 0.5 to about 20 wt % of a pour point depressing base oil blending component prepared from an hydroisomerized bottoms material having an average degree of branching in the molecules between about 5 and 9 alkyl-branches per 100 carbon atoms and wherein not more than 10 wt % boils below about 900° F.; and (c) between about 5 to about 30 wt % of an additive package designed to meet the specifications for ILSAC GF-3.
Owner:CHEVROU USA INC

Hydroprocessing catalyst and method of making the same

The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
Owner:CHEVROU USA INC

Hydroconversion Processes Employing Multi-Metallic Catalysts and Method for Making Thereof

A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v−2+P*z−x*z+n*y*z=0; and 0≦y≦−P / n; 0≦x≦P; 0≦v≦2; 0≦z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
Owner:CHEVROU USA INC

Two-step method for hydrotreating of a hydrocarbon feedstock comprising intermediate fractionation by rectification stripping

A process for hydrotreatment of a hydrocarbon feed comprises at least two reaction steps with intermediate fractionation of the effluent from the first step to eliminate unwanted impurities for the catalyst of the second step and to produce a desulphurized light liquid fraction. The intermediate fractionation comprises stripping the liquid effluent from the first step using low pressure hydrogen with rectification of the stripping vapours using a substantially desulphurized liquid reflux. The conditions for said fractionation and for the first hydrotreatment step can produce a substantially desulphurized light liquid fraction which is not supplied to the second step.
Owner:INST FR DU PETROLE

Integrated process to convert heavy oils from oil sands to petrochemical feedstock

An aromatics / naphthalene rich stream obtained by processing heavy gas oil derived from tar sands and cycle oils derived from cracking heavy gas oil may optionally be blended and subjected to a hydrogenation process and a ring opening reaction typically in the presence of a zeolite, alumina, or silica alumina based catalyst which may contain noble metals and or copper or molybdenum to produce paraffinic feedstocks for further chemical processing.
Owner:NOVA CHEM (INT) SA

Novel mixed metal oxides

A unique mixed metal molybdotungstate material has been developed. The material may be used as a hydroprocessing catalyst. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodearomatization, hydrodesilication, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Owner:UOP LLC

Ebullated bed hydroprocessing systems

An ebullated bed hydroprocessing system, and also a method for upgrading a pre-existing ebullated bed hydroprocessing system, involves introducing a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into an ebullated bed reactor. The colloidal or molecular catalyst is formed by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst in situ. The improved ebullated bed hydroprocessing system includes at least one ebullated bed reactor that employs both a porous supported catalyst and the colloidal or molecular catalyst to catalyze hydroprocessing reactions involving the feedstock and hydrogen. The colloidal or molecular catalyst provides catalyst in what would otherwise constitute catalyst free zones within the ebullated bed hydroprocessing system. Asphaltene or other hydrocarbon molecules too large to diffuse into the pores of the supported catalyst can be upgraded by the colloidal or molecular catalyst. A slurry phase reactor may be positioned upstream from one or more ebullated bed reactors or converted from a pre-existing ebullated bed reactor.
Owner:HEADWATERS TECH INNOVATION LLC

Hydrocarbon resid processing and visbreaking steam cracker feed

The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is treated by hydroprocessing and visbreaking and then passed to a steam cracker to obtain a product comprising olefins.
Owner:EXXONMOBIL CHEM PAT INC

Modified molecular screen base precious metal diesel oil deepness hydrogenation dearomatization catalyst and method of preparing the same

The invention discloses a modified molecular sieve-based noble metal catalyst for deep hydrodearomatization of diesel and the preparation method thereof. The catalyst is suitable for hydrodearomatization of the FCC diesel, particularly suitable for deep hydrodearomatization of diesel after hydro-upgrading of the FCC diesel. The dearomatized diesel can be used as a blend component of high-quality diesel. The catalyst contains modified HY molecular sieve as carriers and noble metals such as Pt, Pd and Ir as active components. The industrialized HY molecular sieve is modified to have microporous-mesoporous structure, and the carrier has medium acidity and is doped with Cr, Zn, Sn and Mo oxides of the active components with ring-opening selectivity, so that the inventive catalyst is characterized in deep cracking inhibition and ring-opening selection. The catalyst is used in the deep hydrodearomatization of the second stage in the two-stage hydro-upgrading of diesel.
Owner:BC P INC CHINA NAT PETROLEUM CORP +1

Flexible method for producing oil bases with a ZSM-48 zeolite

A process for the production of very high quality base oils optionally with simultaneous production of high quality middle distillates comprises the stages for hydrotreatment, preferably hydrocracking, on Y or beta zeolite, and atmospheric distillation. The effluent is subjected to a catalytic dewaxing on the ZSM-48 catalyst. The process then comprises a hydrofinishing stage for hydrogenating the aromatic compounds, preferably on a catalyst that comprises at least one noble metal of group VIII, chlorine and fluorine, and the stages of atmospheric and vacuum distillation. The hydrofinishing stage is conducted at a temperature lower by 20-200° C. than the catalytic dewaxing stage.
Owner:INST FR DU PETROLE

Hydrotreated hydrocarbon tar, fuel oil composition, and process for making

Provided is a hydrocarbon tar. The tar has 75 wt % or more of aromatics of 10 carbons to 75 carbons based on the total weight of the tar. The aromatics exhibit 40% to 80% aromaticity. The tar has a boiling point of from 300° F. to 1350° F. There is also a fuel oil composition having the tar therein. There are also processes for making the hydrocarbon tar.
Owner:EXXONMOBIL CHEM PAT INC

Crystalline transition metal tungstate

A hydroprocessing catalyst has been developed. The catalyst is a unique transition metal tungstate material. The hydroprocessing using the crystalline ammonia transition metal dimolybdotungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Owner:UOP LLC

Aromatics hydrogenation catalyst and preparation method and application of aromatics hydrogenation catalyst

Discloses is an aromatics hydrogenation catalyst. Mesoporous zeolite is used as a catalyst carrier, an active component of the aromatic hydrogenation catalyst includes precious metal, and the mass of the precious metal in the catalyst ranges from 0.1% to 2.0%. The precious metal is used as the hydrogenation active component of the catalyst, the mesoporous zeolite with the advantages of a zeolite molecular sieve and advantages of mesoporous materials is used as the carrier, and the catalyst is applicable to a polycyclic aromatic hydrocarbon hydrogenation reaction process, and is higher in hydrogenation activity and sulfur poisoning resistance. When the aromatic hydrogenation catalyst and a catalyst comprising a conventional zeolite molecular sieve and commercial aluminum oxide load precious metal by the same evaluation device, the aromatic hydrogenation catalyst is higher in hydrogenation and dearomatization activity and sulfuric resistance.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI +1

Preparation method and catalytic application of supported type high-dispersion nickel-based alloy catalyst

The invention discloses a preparation method and a catalytic application of a supported type high-dispersion nickel-based alloy catalyst. The preparation method comprises the following steps: by virtue of an in-situ growth method, supporting Ni, M (M=Co, Zn, Cu, Fe, Cr and the like) metal in the form of hydrotalcite on the surface of a microsphere-form gamma-Al2O3 carrier with grain size of 20-40 meshes and in a duct of the microsphere-form gamma-Al2O3 carrier, namely growing lamellar precursor LDHs containing Ni and M metal ions outside and inside a Al2O3 particle to form supported type high-dispersion distribution, converting the lamellar precursor LDHs into a corresponding composite metal oxide by drying and roasting at high temperature, and reducing the composite metal oxide to obtain the supported type high-dispersion nickel-based alloy catalyst with NiM distributed on the outer surface and in the duct of the carrier particle. The supported type high-dispersion nickel-based alloy catalyst is applied to first selective hydrogenation reaction of cracked gasoline, so that the conversion rate, the selectivity and the stability of the catalyst can be effectively improved; and moreover, the supported type high-dispersion nickel-based alloy catalyst can be used for methane reforming, and catalyzing reaction of preparing low-carbon hydrocarbon and alcohol by virtue of CO and CO2 hydrogenation.
Owner:BEIJING UNIV OF CHEM TECH

Fluorinated hydrogenation catalyst with silicon oxide-alumina as carrier and its production

A fluoric hydrocatalyst with silicon oxide-aluminum oxide as its carrier contains nickel oxide (1-10 Wt%), molybdenum oxide and tungsten oxide (10-50), F (1-10) and carrier (rest). It has high hydrorefining performance. It is prepared by introducing F, Mo, Ni and W to carrier.
Owner:CHINA PETROLEUM & CHEM CORP +1

Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system

An ebullated bed hydroprocessing system, and also a method for upgrading a pre-existing ebullated bed hydroprocessing system, involves introducing a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into an ebullated bed reactor. The colloidal or molecular catalyst is formed by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst in situ. The improved ebullated bed hydroprocessing system includes at least one ebullated bed reactor that employs both a porous supported catalyst and the colloidal or molecular catalyst to catalyze hydroprocessing reactions involving the feedstock and hydrogen. The colloidal or molecular catalyst provides catalyst in what would otherwise constitute catalyst free zones within the ebullated bed hydroprocessing system. Asphaltene or other hydrocarbon molecules too large to diffuse into the pores of the supported catalyst can be upgraded by the colloidal or molecular catalyst. A slurry phase reactor may be positioned upstream from one or more ebullated bed reactors or converted from a pre-existing ebullated bed reactor.
Owner:HEADWATERS TECH INNOVATION LLC

Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process

The present invention relates to a method of producing aromatic products (benzene / toluene / xylene) and olefin products from petroleum fractions obtained by fluid catalytic cracking, and, more particularly, to a method of producing products comprising high-concentration aromatic products and high value-added light olefin products from light cycle oil obtained by fluid catalytic cracking.
Owner:SK INNOVATION CO LTD

Catalytic process for the treatment of organic compounds

A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.
Owner:CARNEGIE MELLON UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products