Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1091 results about "X ray beam" patented technology

Cone-beam computed tomography systems (CBCT) are a variation of traditional computed tomography (CT) systems. The CBCT systems used by dental professionals rotate around the patient, capturing data using a cone-shaped X-ray beam.

Cone-beam computerized tomography with a flat-panel imager

A radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source.
Owner:WILLIAM BEAUMONT HOSPITAL

Vehicle-carried mobile container inspection apparatus

A vehicle-carried mobile container inspection apparatus characterized in that the mobile container inspection apparatus comprises a first box-shaped cabin arranged in the front portion of the chassis and provided with a workroom accommodating a scan control module, an image acquisition module and an operation / inspection module; and a second box-shaped cabin and a third box-shaped cabin both arranged on the rear portion of the rotatable platform, in which the second box-shaped cabin is arranged on the top of the third box-shaped cabin, the control unit of the radiation source is accommodated in the second box-shaped cabin, the third box-shaped cabin is arranged under the rotatable platform, the radiation source is arranged in the third box-shaped cabin, the level of the radiation source from which the X-ray beam emit is arranged below the level of the chassis, the scanning vehicle is provided with a driving means to smoothly move the scanning vehicle the rotatable platform is provided with a rotatably driving means, when inspecting a container, the rotatable platform is driven to turn 90 degrees, and the second arm turns into its vertical gesture, so that a portal-shaped frame is formed by means of the parallelogrammical bracket, the first arm and the second arm. The mobile inspection container apparatus is capable of inspecting as broad area as to reach the vehicle chassis. The apparatus comprises two vehicles, in which usually the both vehicles are used, while only one vehicle is used for fulfilling the inspection work in emergency.
Owner:TSINGHUA UNIV +1

Elongated lifetime x-ray method and apparatus used in conjunction with a charged particle cancer therapy system

The system uses an X-ray imaging system having an elongated lifetime. Further, the system uses an X-ray beam that lies in substantially the same path as a charged particle beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source located proximate to the charged particle beam path. By generating the X-rays near the charged particle beam path, an X-ray path running collinear, in parallel with, and / or substantially in contact with the charged particle beam path is created. The system then collects X-ray images of localized body tissue region about a cancerous tumor. Since, the X-ray path is essentially the charged particle beam path, the generated image is usable for precisely target the tumor with a charged particle beam.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Charged particle cancer therapy and patient positioning method and apparatus

The invention comprises a laying, semi-vertical, or seated patient positioning, alignment, and / or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and / or under computer control for rapid positioning and / or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and / or in system verification and validation.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Device for performing and verifying a therapeutic treatment and corresponding computer program and control method

The invention relates to a device for performing and verifying therapeutic radiation. An x-ray beam (4) is arranged across from a target volume (3) of the beam source (11) for the high-energy beam (1) in such a way that the beams (1, 4) run in essentially opposite directions (5, 6). The invention also relates to a computer program and a control method for operating said device. The inventive device makes it possible to exactly verify areas (16, 16′, 16″) that are subjected to different levels of radiation, the entire anatomy of the target volume (3), and the surroundings thereof in addition to the contour of the therapy beam (1). The x-ray beam (4) detects the anatomy and position of the patient (21) within the range of the target volume (3) before the high-energy beam (1) is applied and the shape of the applied high-energy beam (1) is then detected and areas (16, 16′, 16″) that are subjected to different levels of radiation as well as at least one partial segment of the target volume (3) during the emission breaks of the high-energy beam (1). The detected data is used for correcting the treatment plan.
Owner:DEUTES KREBSFORSCHUNGSZENT STIFTUNG DES OFFENTLICHEN RECHTS

Focusable and steerable micro-miniature x-ray apparatus

A micro-miniature x-ray apparatus comprises: a first chip subassembly including a source of x-rays including both Bremsstrahlung photons and characteristic x-rays; a second chip subassembly including a filter for transmitting the characteristic x-rays and blocking the Bremsstrahlung photons; a third chip subassembly including a movable element for focusing or collimating the transmitted characteristic x-rays into a beam and means for controlling the position of the focusing element. In one embodiment, the controlling means include a micro-electromechanical system (MEMS). In another embodiment, the position of the movable element determines how the x-ray beam is steered to the focal area. In still another embodiment, the x-ray source includes a field emitter electron source and a target responsive to the electrons for generating x-rays. In this case, the x-ray beam is also steered by selectively energizing the anode segments. In yet another embodiment, the movable element includes a Fresnel zone plate; in still another embodiment it includes an array of poly-capillaries. Advantageously, our x-ray source, including its focusing, collimating and steering components, can be fabricated small enough to be mounted at the end of a catheter. In addition, in some embodiments it can also fabricated sufficiently inexpensively to be disposable after each use.
Owner:LUCENT TECH INC

Automobile Scanning System

A dual-energy x-ray imaging system searches a moving automobile for concealed objects. Dual energy operation is achieved by operating an x-ray source at a constant potential of 100 KV to 150 KV, and alternately switching between two beam filters. The first filter is an atomic element having a high k-edge energy, such as platinum, gold, mercury, thallium, lead, bismuth, and thorium, thereby providing a low-energy spectrum. The second filter provides a high-energy spectrum through beam hardening. The low and high energy beams passing through the automobile are received by an x-ray detector. These detected signals are processed by a digital computer to create a steel suppressed image through logarithmic subtraction. The intensity of the x-ray beam is adjusted as the reciprocal of the measured automobile speed, thereby achieving a consistent radiation level regardless of the automobile motion. Accordingly, this invention provides images of organic objects concealed within moving automobiles without the detritus effects of overlying steel and automobile movement.
Owner:LEIDOS

Vehicle-carried mobile container inspection apparatus

A vehicle-carried mobile container inspection apparatus characterized in that the mobile container inspection apparatus comprises a first box-shaped cabin arranged in the front portion of the chassis and provided with a workroom accommodating a scan control module, an image acquisition module and an operation/inspection module; and a second box-shaped cabin and a third box-shaped cabin both arranged on the rear portion of the rotatable platform, in which the second box-shaped cabin is arranged on the top of the third box-shaped cabin, the control unit of the radiation source is accommodated in the second box-shaped cabin, the third box-shaped cabin is arranged under the rotatable platform, the radiation source is arranged in the third box-shaped cabin, the level of the radiation source from which the X-ray beam emit is arranged below the level of the chassis, the scanning vehicle is provided with a driving means to smoothly move the scanning vehicle; the rotatable platform is provided with a rotatably driving means, when inspecting a container, the rotatable platform is driven to turn 90 degrees, and the second arm turns into its vertical gesture, so that a portal-shaped frame is formed by means of the parallelogrammical bracket, the first arm and the second arm. The mobile inspection container apparatus is capable of inspecting as broad area as to reach the vehicle chassis. The apparatus comprises two vehicles, in which usually the both vehicles are used, while only one vehicle is used for fulfilling the inspection work in emergency.
Owner:TSINGHUA UNIV +1

Radiation scanning units including a movable platform

A scanning unit for inspecting objects comprises in one example a radiation source, a movable platform to support an object, and a detector positioned to receive radiation after interaction of radiation with the object. The platform is movable at least partially within a cavity defined, at least partially, below at least one of the source or the detector. In another scanning unit, a first conveyor conveys an object to a movable platform, and second and third conveyors convey the object from the platform. The second and third conveyors are at different vertical heights. In another scanning unit, images from an energy sensitive detector and a spatial detector are fused. In a method, scanning parameters during CT scanning are changed and images reconstructed before and after the change. In another method, an object is scanned with X-ray beams having first and second energy distributions, generated by the same X-ray source.
Owner:VARIAN MEDICAL SYSTEMS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products