Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

289 results about "Start codon" patented technology

The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a modified Met (fMet) in bacteria, mitochondria and plastids. The most common start codon is AUG.

Cis/trans riboregulators

The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcriptional regulation of gene expression using RNA molecules to both repress and activate translation of an open reading frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5′ untranslated region (5′ UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention designed to operate in prokaryotic cells, the stem of the hairpin secondary structure sequesters the ribosome binding site (RBS). In embodiments of the invention designed to operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5′ UTR of an mRNA. A small RNA (trans-activating RNA, or taRNA), expressed in trans, interacts with the crRNA and alters the hairpin structure. This alteration allows the ribosome to gain access to the region of the transcript upstream of the start codon, thereby activating transcription from its previously repressed state.
Owner:TRUSTEES OF BOSTON UNIV

Process for producing activated human ALT

The present invention relates to an altered-type human ALT gene in which the codons for the five amino acids in the human ALT (alanine aminotransferase) gene are replaced, i. e. the fourth amino acid codon from the initiation codon for methionine (Met) is replaced by a codon for serine (Ser), the fifth by a codon for threonine (Thr), the seventh by a codon for aspartic acid (Asp), the 39th by a codon for glycine (Gly) and the 222nd by a codon for alanine (Ala), and concurrently, restriction sites are added at the upstream and downstream of said gene.The active human ALT having properties similar to those of the native enzyme can be effectively produced by culturing E. coli transformed with a recombinant plasmid in which the altered-type human ALT gene of the present invention is ligated to a vector.
Owner:ORIENTAL YEAST

Brassica Juncea Lines With High Oleic Acid Profile In Seed Oil

In various aspects, the invention provides Brassica juncea plants, seeds, cells, nucleic acid sequences and oils. Edible oil derived from plants of the invention may have significantly higher oleic acid content than other B. juncea plants. In one embodiment, the B. juncea line MJ02-357-3 contains a mutant allele MJ02-313-1/BjFAD2-a at the BjFAD2-a gene locus, having a single base-pair change (a G to A substitution in the ORF at position 281 in reference to the first ATG start codon) relative to the wild type sequence. The change is predicted to encode a Glycine-94 Aspartic acid mutation in the sequence of the predicted BjFAD2-a protein. In another embodiment, the B. juncea line MJ02-357-3 contains a mutant allele MJ02-357-3/BjFAD2-a at the BjFAD2-a gene locus, having a single base-pair change (a C to T substitution in the ORF at position 647 in reference to the first ATG start codon) relative to the wild type sequence. The change is predicted to encode a Proline-216 Leucine mutation in the sequence of the predicted BjFAD2-a protein. As a result of these mutations, it can be predicted that the function of the BjFAD2-a proteins are negatively affected in Brassica juncea lines MJ02-313-1 and MJ357-3 as reflected in the increased levels of oleic acid in seed oil in comparison with the wild-type line J96D-4830. Seeds from MJ02-313-1 and MJ02-357-3 plants may for example yield an oil having oleic acid content of greater than 70% by weight.
Owner:NUTRIEN AG SOLUTIONS (CANADA) INC

Aroma gene in rice and functional marker thereof

An aroma gene in rice and a functional marker thereof belong to the biotechnology field. The aroma gene is characterized in that the aroma gene is allelic to a coded betaine-aldehyde dehydrogenase gene Badh2 on chromosome 8; compared with the normal Badh2, in the aroma gene, 803bp is deleted between the fourth exon and the fifth exon; the deleted base is positioned between downstream 1628bp and 2430bp of a transcription initiator codon of the gene; and the 803bp deleted base corresponds to the fourth exon 90bp, the fourth intron 694bp and the fifth exon 19bp. The functional marker FMbadh2-E4-5 of the aroma gene is designed according to the aroma gene in rice. By the method, the aroma gene can be transplanted to the non-aroma rice varieties with target, thus greatly promoting cultivation of new high-quality aromatic rice varieties.
Owner:CHINA NAT RICE RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products