Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2782 results about "Optical transmitter" patented technology

Lithography system

A maskless lithography system for transferring a pattern onto the surface of a target. At least one beam generator for generating a plurality of beamlets. A plurality of modulators modulate the magnitude of a beamlet, and a control unit controls of the modulators. The control unit generates and delivers pattern data to the modulators for controlling the magnitude of each individual beamlet. The control unit includes at least one data storage for storing the pattern data, at least one readout unit for reading out the data from the data storage, at least one data converter for converting the data that is read out from the data storage into at least one modulated light beam, and at least one optical transmitter for transmitting the at least one modulated light beam to the modulation modulators.
Owner:ASML NETHERLANDS BV

Optical phased array lidar system and method of using same

A lidar-based system and method are used for the solid state beamforming and steering of laser beams using optical phased array (OPA) photonic integrated circuits (PICs) and the detection of laser beams using photodetectors. Transmitter and receiver electronics, power management electronics, control electronics, data conversion electronics and processing electronics are also included in the system and used in the method.Laser pulses beamformed by the OPA PIC reflect from objects in the field of view (FOV) of said OPA, and are detected by a detector or a set of detectors.A lidar system includes at least one lidar, and any subset and any number of complementary sensors, data processing / communication / storage modules, and a balance of system for supplying power, protecting, connecting, and mounting the components of said system.Direct correlation between the 3D point cloud generated by the lidar and the color images captured by an RGB (Red, Green, Blue) video camera can be achieved by using an optical beam splitter that sends optical signals simultaneously to both sensors.A lidar system may contain a plurality of lidar sensors, a lidar sensor may contain a plurality of optical transmitters, and an optical transmitter may contain a plurality of OPA PICs.
Owner:QUANERGY SOLUTIONS INC

System and method for remote optical digital networking of computing devices

This invention extends the range of optical data of mobile device by trading speed for distance as well as integrating a plurality of pulses over time to define a single bit of information. The present invention uses a number of integrated pulses to represent a single bit instead of utilizing a one to one correspondence between pulses and bits. The present invention executes a range extender application which executes on the mobile device without any hardware modification to the mobile device. The range extender application causes the optical transmitter to “stutter” or repetitively emanate the identical pulse representing a bit of information. Sufficient photons are thereby gathered at a receiver to reach a predetermined threshold. A tradeoff of the data transmission frequency in this invention is that a signal intensity drops by a factor of 100 when distance increases by a factor of 10 yielding a distance / intensity ratio of {fraction (1 / 10)}.
Owner:GLOBALFOUNDRIES US INC

Transverse-mode multiplexing for optical communication systems

An optical communication system having an optical transmitter and an optical receiver optically coupled via a multi-path fiber. The optical transmitter launches, into the multi-path fiber, an optical transverse-mode-multiplexed (TMM) signal having a plurality of independently modulated components by coupling each independently modulated component into a respective transverse mode of the multi-path fiber. The TMM signal undergoes inter-mode mixing in the multi-path fiber before being received by the optical receiver. The optical receiver processes the received TMM signal to reverse the effects of inter-mode mixing and recover the data carried by each of the independently modulated components.
Owner:ALCATEL LUCENT SAS

Epon with power-saving features

One embodiment provides a system for power saving in an Ethernet Passive Optic Network (EPON). The system includes an optical line terminal (OLT), an optical network unit (ONU), a traffic-detection module configured to detect status of traffic to and from the ONU, and a power-management module configured to place the ONU in sleep mode based on the detected traffic status. The ONU includes an optical transceiver that includes an optical transmitter configured to transmit optical signals to the OLT and an optical receiver configured to receive optical signals from the OLT.
Owner:AVAGO TECH INT SALES PTE LTD

Integrated wired and wireless WDM PON apparatus using mode-locked light source

InactiveUS20060182446A1Low costEfficient wireless integrationIndoor gamesWavelength-division multiplex systemsMode-lockingBroadband
Integrated wired and wireless wavelength division multiplexing passive optical network (WDM PON) apparatus using a light source mode-locked to fed incoherent light includes: a fed light generator for providing fed light for up / downstream signals via a broadband light source emitting an incoherent optical signal; a central office (CO) for receiving, mode-locking, and downstream-optical-transmitting the incoherent optical signal generated by the fed light generator and receiving and optical-detecting an upstream optical signal transmitted from a subscriber unit; and the subscriber unit for receiving, mode-locking, and upstream-optical-transmitting the incoherent optical signal generated by the fed light generator and receiving and optical-detecting a downstream optical signal transmitted from the CO, wherein a wired optical transmitter for transmitting a baseband wired signal and a wireless optical transmitter for transmitting a high frequency radio frequency (RF) signal are comprised for up / downstream optical transmission of the CO and the subscriber unit.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood

Medical diagnostic system, apparatus and methods are disclosed. Optical transmitters generate radiation-containing photons having a specific interaction with at least one target chromophore in a target structure, preferably a blood vessel such as the interior jugular vein. The optical transmitters transmit the radiation into at least a first area including a substantial portion of the target structure and into a second area not including a substantial portion of the target structure. Optical receivers detect a portion radiation scattered from at least the first area and the second area. A processor estimates oxygenation, pH or cardiac output based on the scattered radiation detected from the first area, and the scattered radiation from the second area.
Owner:SKYLINE BIOMEDICAL

WDM type passive optical network

In a WDM type PON system, each ONU comprises an optical transmitter capable to transmit optical signals with variable wavelengths, an optical signal receiving filter variable its receiving wavelength, and a control unit. An OLT selects in response to a wavelength allocation request from each ONU, a transmitting wavelength and a receiving wavelength out of currently free wavelengths and allocates these wavelengths to the requester ONT. The control unit of the ONU switches the transmitting wavelength of the optical transmitter and the receiving wavelength of the optical signal receiving filter to the wavelengths specified in a response message from the OLT and starts data communication.
Owner:HITACHI LTD

Integrated driving, receiving, controlling, and monitoring for optical transceivers

An optical transceiver includes a single integrated circuit chip to integrate the drive, receive, control, and monitoring functions of the optical transceiver. The single chip may further have an advance replacement algorithm and monitoring algorithm for the opto-electronic devices of the optical transmitter and receiver to generate flags and / or an advance replacement indication. Methods, apparatus, and systems are disclosed.
Owner:NASA +1

Coolerless photonic integrated circuits (PICs) for WDM transmission networks and PICs operable with a floating signal channel grid changing with temperature but with fixed channel spacing in the floating grid

ActiveUS20050249509A1Requirements for a hermetically sealed package are substantially relievedEasy to controlLaser optical resonator constructionSemiconductor laser arrangementsElectro-absorption modulatorHermetic packaging
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator / laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.
Owner:INFINERA CORP

Method and system for hybrid integration of an opto-electronic integrated circuit

An opto-electronic integrated circuit (OEIC) includes an SOI substrate, a set of composite optical transmitters, a set of composite optical receivers, and control electronics disposed in the substrate and electrically coupled to the set of composite optical transmitters and receivers. Each of the composite optical transmitters includes a gain medium including a compound semiconductor material and an optical modulator. Each of the composite optical receivers includes a waveguide disposed in the SOI substrate, an optical detector bonded to the SOI substrate, and a bonding region disposed between the SOI substrate and the optical detector. The bonding region includes a metal-assisted bond at a first portion of the bonding region and a direct semiconductor-semiconductor bond at a second portion of the bonding region. The OEIC also includes control electronics disposed in the SOI substrate and electrically coupled to the set of composite optical transmitters and the set of composite optical receivers.
Owner:SKORPIOS TECH

Optical transmitters for mm-wave rof systems

Optical transmitters for radio over fiber systems are disclosed. More particularly, the optical transmitters include optically-injection-locked vertical cavity surface-emitting laser devices (OIL VCSELS). The transmitters include a master laser, at least one slave laser injection-locked by the master laser, and an equalizer / filter unit that enables the ratio of the carrier power to the sideband power in the output signal of the transmitter to be varied and optimized independently of the injection ratio of the transmitter.
Owner:CORNING OPTICAL COMM LLC

Directly modulated laser optical transmission system

An optical transmitter for generating a modulated optical signal for transmission over dispersive fiber optic links in which a broadband analog radio frequency signal input is applied to a modulation circuit for directly modulating a semiconductor laser with the analog signal input. The transmitter may further include a temperature sensor in proximity to the laser and a negative feedback control circuit coupled to the temperature sensor for adjusting the temperature of the laser in response to an output characteristic of the laser, such as linearity.
Owner:EMCORE INC

Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof

By using low-frequency signals, an optical transmitting unit modulates one of a wavelength, a transmission timing, and an intensity of light as a carrier wave. A polarization multiplexer synthesizes the output light signals, modulated by the optical transmitting unit, in polarization states orthogonal to each other and generates polarization-multiplexing signals. A polarization splitter splits by extracting two orthogonal polarization components from the polarization-multiplexing signals. The polarization states of the polarization-multiplexing signals are controlled by a polarization controller in an optical receiving unit. A band-pass filter extracts components transmitting through passbands from output signals of the optical receiving unit and outputs an intensity of the components. Based on the intensity output from the filter, a controlling circuit generates feedback control signals for maximizing a ratio of the components of the low-frequency signals and by using the feedback control signals, the polarization controller controls the polarization states of the optical multiplexing signals.
Owner:FUJITSU LTD

Wavelength-locked external cavity lasers with an integrated modulator

An optical transmitter providing the benefits of both filter-locked and wavelength-locked lasers is disclosed by modifying an external cavity (32) for the integration of an optical modulator (14). The external cavity (32) provides a round-trip path for light travel. A substrate (24) is connected to the external cavity (32) where at least one gain element (16) and the optical modulator (14) are integral with the substrate (24). A partial reflector (40) is also integral with the substrate (24) and couples the at least one gain element (16) with the optical modulator (14).
Owner:OCLARO NORTH AMERICA

System, method and apparatus for improved electrical-to-optical transmitters disposed within printed circuit boards

The present invention provides a system, method and apparatus for improved electrical-to-optical transmitters (100) disposed within printed circuit boards (104). The heat sink (110, 200) is a thermal conductive material disposed within a cavity (102) of the printed circuit board (104) and is thermally coupled to a bottom surface (112) of the electrical-to-optical transmitter (100). A portion of the thermal conductive material extends approximately to an outer surface (120, 122 or 124) of a layer (114, 116 or 118) of the printed circuit board (104). The printed circuit board may comprise a planarized signal communications system or an optoelectronic signal communications system. In addition, the present invention provides a method for fabricating the heat sink wherein the electrical-to-optical transmitter disposed within a cavity of the printed circuit board is fabricated. New methods for flexible waveguides and micro-mirror couplers are also provided.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Multimode optical fibre communication system

A multimode optical fibre communications system, and in particular to a system in which non-linearities in the propagation of the signal through a multimode optical communications channel degrade the signal presented to the receiver. The system includes an optical transmitter unit for connection to a multimode optical fibre transmission link. The transmitter unit has a data input for receiving an input data signal, a data signal processing circuit and a source of optical radiation. The data signal processing circuit is arranged to receive the input data signal from the data input and to provide a processed data signal to the source of optical radiation and the source of optical radiation is arranged to generate from this an optical signal for transmission by a multimode optical fibre. The data processing circuit is arranged to provide from the input data signal a non-inverted data signal and an inverted data signal, receive a control signal for controlling the generation of the processed data signal, apply a controllable delay in accordance with the control signal to at least one of the non-inverted and inverted data signals, and combine the non-inverted and inverted signals after the application of the controllable delay(s) and gain factor(s) to generate the processed data signal.
Owner:BROADCOM INT PTE LTD

Electronically controlled roll towel dispenser with data communication system

An electronically controlled roll towel dispenser with a data communication system. The dispenser automatically dispenses a predetermined length of paper toweling from a supply roll after a length of toweling has been detached by a user pulling and tearing the protruding toweling against a stationary cutting blade. The dispenser is battery powered with an electric motor, an electromechanical dispensing mechanism, and an embedded microcontroller for controlling and monitoring operation of the dispenser. In addition to primary control functions, the microcontroller monitors parameters such as battery condition, towel usage, system status, system errors, and unsafe operating conditions. Pushbutton switches are also provided for programming towel length and the dispense delay. The dispenser further includes an optical transmitter for transmitting visual and infrared data to a receiving device. Useful information about the status of the dispenser can be visibly discerned by an operator through the use of primitive low-speed flash patterns, while high-speed infrared digital data can be simultaneously embedded in or multiplexed with the visible data.
Owner:SAN JAMAR INC +1

Optical transmitter with integrated amplifier and pre-distortion circuit

An optical transmitter including a housing containing an electrical input disposed in said housing for receiving an information signal; an amplifier for electronically amplifying the input signal; and a laser connected to the output of the amplifier for generating a modulated light beam corresponding to the information signal that is emitted externally from said housing.
Owner:EMCORE INC

Base transceiver station having mobile and fixed wireless service distribution functions

A Base Transceiver Station (BTS) for interworking a Wireless Local Area Network (W-LAN) and a mobile communication network through a Radio-over-Fiber (RoF) link is provided. The BTS having mobile and fixed wireless service distribution functions includes a Wireless Local Area Network Access Point (W-LAN AP), a wireless service function block, a Radio Frequency (RF) converter, and an optical transmitter. The wireless service function block performs transmission / reception to / from a predetermined mobile terminal via a connection for the voice call communication and data communication with an external Base Station Controller (BSC). The RF converter performs a data communication connection with the external BSC, up-converts data from the BSC into W-LAN frequency band data, and down-converts data to the BSC into baseband data. The optical transmitter transmits the up-converted data of the packet data RF converter to the W-LAN AP through a RoF link.
Owner:SAMSUNG ELECTRONICS CO LTD

Communications system including units with LCD optical transmitters/receivers and related methods

A communications system may include first and second separate units, at least one of which may include a radio frequency (RF) transceiver. The first unit may include a liquid crystal display (LCD) including at least one optical transmitter pixel. Further, the second wireless unit may include at least one optical receiver for receiving optical signals from the at least one optical transmitter pixel of the LCD.
Owner:MALIKIE INNOVATIONS LTD

Auto-setting and optimization of EAM with optical line systems

According to the invention there is provided a method of controlling an optical communication system comprising an optical transmitter, an optical receiver and an optical fiber interconnecting the optical transmitter and the optical receiver, the method comprising determining the performance of the optical communication system and controlling at least one setting parameter of the optical transmitter according to the measured performance.
Owner:OPLINK COMM

Pre-equalized optical transmitter and pre-equalized optical transmission system

Provided is a pre-equalized optical transmitter, comprises: a laser source; a duo-binary pre-coder circuit; a pre-equalization circuit for applying an inverse function of chromatic dispersion; at least two D / A converters; and an optical field modulator comprising at least two input terminals for an electric signal. The pre-equalized optical transmitter: converts, by the duo-binary pre-coder circuit, a digital information signal of a predetermined symbol time to be transmitted into a digital complex signal including one sampling point per symbol; equalizes, by the pre-equalization circuit, degradation in transmission of the digital complex signal; converts, by the D / A converters, the equalized digital complex signal into an analogue signal; suppresses an analogue signal leaking outside a Nyquist bandwidth by at least 23 dB; modulates, by the optical field modulator, light output from the laser source with the analogue signal to generate a modulated optical field signal; and transmits the modulated optical field signal.
Owner:HITACHI LTD

Optical system comprising an FM source and a spectral reshaping element

In one form of the present invention, there is provided a fiber optic communication system comprising: an optical signal source adapted to receive a base binary signal and produce a first signal, said first signal being frequency modulated; and an optical spectrum reshaper adapted to reshape the first signal into a second signal, said second signal being amplitude modulated and frequency modulated; characterized in that: the frequency characteristics of said first signal, and the optical characteristics of said optical spectrum reshaper, being such that the frequency characteristics of said second signal are configured so as to increase the tolerance of the second signal to dispersion in a transmission fiber. In another form of the present invention, there is provided an optical transmitter comprising: a frequency modulated source for generating a first frequency modulated signal, and an amplitude modulator for receiving the first frequency modulated signal and for generating a second amplitude and frequency modulated signal. In another form of the present invention, there is provided a method for transmitting an optical signal through a transmission fiber comprising: receiving a base binary signal; operating an optical signal source using the base binary signal to produce a first signal, said first signal being frequency modulated; passing the frequency modulated signal through an optical spectrum reshaper so as to reshape the first signal into a second signal, said second signal being amplitude modulated and frequency modulated; the frequency characteristics of said first signal, and the optical characteristics of said optical spectrum reshaper, being such that the frequency characteristics of said second signal are configured so as to increase the tolerance of the second signal to dispersion in a transmission fiber; and passing the second signal through a transmission fiber. In another form of the present invention, there is provided a method for transmitting a base signal, comprising: using the base signal to produce a frequency modulated signal; and providing an amplitude modulator for receiving the frequency modulated signal and for generating an amplitude and frequency modulated signal.
Owner:II VI DELAWARE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products