Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

307 results about "Nanodevice" patented technology

A functional macromolecule composed of nanoscale components.

Multifunctional nanodevice platform

The present invention relates to novel therapeutic and diagnostic arrays. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and / or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:MICHIGAN UNIV OF RGT THE

Method for Fabricating a Long-Range Ordered Periodic Array of Nano-Features, and Articles Comprising Same

A long range, periodically ordered array of discrete nano-features (10), such as nano-islands, nano-particles, nano-wires, non-tubes, nano-pores, nano-composition-variations, and nano-device-components, are fabricated by propagation of a self-assembling array or nucleation and growth of periodically aligned nano-features. The propagation may be induced by a laterally or circularly moving heat source, a stationary heat source arranged at an edge of the material to be patterned (12), or a series of sequentially activated heaters or electrodes. Advantageously, the long-range periodic array of nano-features (10) may be utilized as a nano-mask or nano-implant master pattern for nano-fabrication of other nano-structures. In addition, the inventive long-range, periodically ordered arrays of nano-features are useful in a variety of nanoscale applications such as addressable memories or logic devices, ultra-high-density magnetic recording media, magnetic sensors, photonic devices, quantum computing devices, quantum luminescent devices, and efficient catalytic devices.
Owner:RGT UNIV OF CALIFORNIA

Antimicrobial mesoporous silica nanoparticles

Methods for preparing a series of mesoporous silicates, such as room-temperature ionic liquid (RTIL)-templated mesoporous silicate particles, with various particle morphologies are provided. Methods for preparing silicate particles with antimicrobial agents within the MSN pores is also provided. The particles can be used as controlled-release nanodevices to deliver antimicrobial agents.
Owner:IOWA STATE UNIV RES FOUND

Method for preparing graphene powder

The invention relates to a method for preparing graphene powder in large scale, which is characterized by comprising the following steps of: firstly, uniformly peeling graphene oxide into a graphene oxide suspension solution; then, atomizing the graphene oxide solution by using the spray drying technology comprising spray pyrolysis drying and spray freeze drying, and removing a solvent to obtain graphene oxide powder; and finally, oxidizing grapheme by using the non-expansion heat treatment process to obtain non-agglomerative graphene powder. The continuous preparation process of the spray technology and the non-expansion heat treatment process ensure the large-scale preparation of the graphene powder. The prepared graphene powder comprising intermediate product graphene oxide powder does not have agglomeration and has good dispersivity in the solvent. The graphene powder is used as a filling material to prepare high strength composite materials, conductive composite materials, novel air-tight flame-retardant composite materials, novel nanodevices and the like.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Apparatus and method for noninvasive monitoring of analytes in body fluids

Noninvasive in vivo real time analyte measurement uses a multitude of sensors binding reversibly to the analyte whereby the response of the sensors to a noninvasive stimulus is altered by their bound versus unbound state. The stimulus and responses are electromagnetic, magnetic or any other suitable forms. The sensors are bound to a blood component providing transport through the body fluids and sensor elimination. A sensor is constructed from proteins or as a nanodevice. A noninvasive device generates the stimulus, senses the responses, determines the measurement, and controls a medication infusion pump. A non-contact device is used for population screening, and one form of such a device is a nuclear magnetic resonance imager. Measurement in fluids other than blood uses a blood component flowing out of blood and into the desired fluid.
Owner:WILSON KITCHENER CLARK

Preparation method of large-area and continuous graphen/zinc oxide composite structure

The invention relates to a method for preparing continuous graphen / zinc oxide composite structure in large area, which belongs to the preparation field of the novel nanometer material, and is applicable to the fields such as sensor, solar panel, novel nanometer part and the like. The method comprises the following three steps that: first step: uniformly dispersing graphen or graphene oxide in liquid phase; second step: utilizing a hydrothermal process to ensure the zinc oxide nanometer structure and the graphen two-dimensional sheet to form a continuous structure in a three-dimensional space; third step: transferring the prepared composite structure onto a substrate to be dried. The method has simple process and low device requirement since the composite structure is synthesized in the solution; the process repeatability is strong, and the process parameter can be well controlled; the prepared graphen / zinc oxide composite structure has large area and is continuous, the generated zinc oxide nanometer sheet layer, nanometer particle and nanometer line are connected with each other and intersected with each other under the effect of the graphen so as to form a continuous porous structure in the three-dimensional space.
Owner:如东文园投资开发有限公司

Nanodevice arrays for electrical energy storage, capture and management and method for their formation

An apparatus, system, and method are provided for a vertical two-terminal nanotube device configured to capture and generate energy, to store electrical energy, and to integrate these functions with power management circuitry. The vertical nanotube device can include a column disposed in an anodic oxide material extending from a first distal end of the anodic oxide material to a second distal end of the anodic oxide material. Further, the vertical nanotube device can include a first material disposed within the column, a second material disposed within the column, and a third material disposed between the first material and the second material. The first material fills the first distal end of the column and extends to the second distal end of the column along inner walls of the column. The second material fills the first distal end of the column and extends to the second distal end of the column within the first material. Both the first material and the second material are exposed at the first distal end of the column.
Owner:UNIV OF MARYLAND

Multifunctional nanodevice platform

The present invention relates to novel therapeutic and diagnostic arrays. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and / or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:RGT UNIV OF MICHIGAN

Multiplexed Olfactory Receptor-Based Microsurface Plasmon Polariton Detector

The invention provides a bio-sensing nanodevice comprising: a stabilized G-protein coupled receptor on a support, a real time receptor-ligand binding detection method, a test composition delivery system and a test composition recognition program. The G-protein coupled receptor can be stabilized using surfactant peptide. The nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized G-protein coupled receptor immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
Owner:MASSACHUSETTS INST OF TECH

P-n heterojuction structure of zinc oxide-based nanorod and semiconductor thin film, preparation thereof, and nano-device comprising same

A heterojunction structure composed of a p-type semiconductor thin film and n-type ZnO-based nanorods epitaxially grown thereon exhibits high luminescence efficiency property due to facilitated tunneling of electrons through the nano-sized junction and the use of ZnO having high exciton energy as a light emitting material, and thus it can be advantageously used in nano-devices such as LED, field effect transistor, photodetector, sensor, etc.
Owner:LG DISPLAY CO LTD

Multicolor fluorescence fluorescent graphene quantum dot material preparation method

The invention relates to a preparation method of multicolor fluorescence fluorescent graphene quantum dots. According to the invention, pyrene with a low price is adopted as a precursor; oxygen functionalization is carried out on the surface of pyrene grains under low temperature; and low-temperature hydrothermal dehydrogenation, growth, and in-situ surface functionalization are carried out under the effect of a catalyst hydrazine and ammonia water. With the method provided by the invention, synthesized quantum dots can be stably dispersed in water. The quantum dots are brown under low concentration, and are approximately black under high concentration (the higher the concentration, the deeper the color). Light emitting color or wavelength is adjustable (blue to yellow, 450-535nm). The quantum dots provided by the invention show attractive application prospects in high-tech fields such as environmental protection, bio-nano technology, new energy, nano-device, and the like. The synthesizing method is simple and environment-friendly, and energy consumption is low. The method is suitable for industrial scale-up.
Owner:SHANGHAI UNIV

DNA sequencing using multiple metal layer structure with organic coatings forming transient bonding to DNA bases

A nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
Owner:IBM CORP

Ordered biological nanostructures formed from chaperonin polypeptides

The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.
Owner:NASA

Systems and methods for electronic detection with nanofets

There is disclosed a system for electrical charge detection comprising a nanoFET device. Also disclosed is a method of electrical charge detection for single molecule sequencing. The method includes attaching a macromolecule or assemblies thereof to a gate of a nanoFET device and flowing in a solution of charge tags, where a charge tag includes a nucleotide attached to a charge complex. The method also includes incorporating one charge tag into the macromolecule or assemblies thereof and cleaving the charge tags from the macromolecule or assemblies thereof. The method further includes detecting at least one of current and voltage from the nanoFET device.
Owner:APPL BIOSYSTEMS INC

Method for fabricating nanogap electrodes, nanogap electrodes array, and nanodevice with the same

A substrate 1 having metal layers 2A and 2B arranged to form a gap is dipped in an electroless plating solution mixed an electrolyte solution including metal ions with a reducing agent and a surfactant. Metal ions are reduced by the reducing agent to be precipitated on the metal layers 2A and 2B, and the surfactant is adhered to a surface of the metal on the metal layers, thereby forming a pair of electrodes 4A, 4B to be controlled to have a nanometer sized gap. These steps enable to provide a method for fabricating nanogap electrodes, a nanogap electrodes array, and a nanodevice with the same.
Owner:JAPAN SCI & TECH CORP

Nanodevices for Spintronics and Methods of Using Same

Graphene magnet multilayers (GMMs) are employed to facilitate development of spintronic devices. The GMMs can include a sheet of monolayer (ML) or few-layer (FL) graphene in contact with a magnetic material, such as a ferromagnetic (FM) or an antiferromagnetic material. Electrode terminals can be disposed on the GMMs to be in electrical contact with the graphene. A magnetic field effect is induced in the graphene sheet based on an exchange magnetic field resulting from a magnetization of the magnetic material which is in contact with graphene. Electrical characteristics of the graphene can be manipulated based on the magnetization of the magnetic material in the GMM.
Owner:BROOKHAVEN SCI ASSOCS

Process for producing nanorcrystalline composites

A process to produce dense nanocrystalline composites such as ceramic bodies, coatings and multi-layered devices with uniform microstructure is disclosed. The invention utilizes sol-gel solutions to reduce agglomeration of nanocrystalline powders in the production of “green bodies” or intermediate products. This novel use of sol-gel solutions also reduces grain growth and porosity in products during sintering. In finished products, final grain sizes are typically less than 100 nm with densities of the final products approaching 99.5% of theoretical densities. In addition, sintering temperatures required are lower than those in conventional methods, typically less than 1,100° C. While FIG. 1 shows one application of this novel process, this invention has wide application in the manufacture of many other products, particularly for composite coatings and in the production of nanodevices.
Owner:NANYANG TECH UNIV

Nanodevice Comprising a Nanorod and Method for Manufacturing the Same

A nanodevice including a nanorod and a method for manufacturing the same is provided. The nanodevice according to an embodiment of the present invention includes i) a substrate; ii) at least one crystal that is located on the substrate and includes a plurality of side surfaces forming an angle with each other; and iii) at least one nanorod that is located on the crystal and extends along a direction that is substantially perpendicular to a surface of the substrate
Owner:LG DISPLAY CO LTD

Bonded structure including a carbon nanotube

A technique of stably bonding a structure including a carbon nanotube with another structure is to be provided. Also, a nano-device that offers excellent performance and high production efficiency is to be provided. A polymer and a carbon nanotube are dispersed in a dispersion medium and on a filled liquid in a Langmuir trough, to obtain a carbon nanotube-based structure constituted of a carbon nanotube and the polymer wound around its rounded surface. The carbon nanotube-based structure is adhered to a substrate, and a ligand is immobilized on a side chain of the polymer. A receptor is immobilized on another carbon nanotube-based structure, and the both carbon nanotube-based structures are joined because of a specific interaction between the ligand and the receptor.
Owner:SANYO ELECTRIC CO LTD

Dendrimer based nanodevices for therapeutic and imaging purposes

A nanodevice composition including N-acetyl cysteine linked to a dendrimer, such as a PAMAM dendrimer or a multiarm PEG polymer, is provided. Also provided is a nanodevice for targeted delivery of a compound to a location in need of treatment. The nanodevice includes a PAMAM dendrimer or multiarm PEG polymer, linked to the compound via a disulfide bond. There is provided a nanodevice composition for localizing and delivering therapeutically active agents, the nanodevice includes a PAMAM dendrimer or multiarm PEG polymer and at least one therapeutically active agent attached to the PAMAM dendrimer or multiarm PEG polymer. A method of site-specific delivery of a therapeutically active agent, by attaching a therapeutically active agent to a PAMAM dendrimer or multiarm PEG polymer using a disulfide bond, administering the PAMAM dendrimer or multiarm PEG polymer to a patient in need of treatment, localizing the dendrimer or multiarm PEG polymer to a site in need of treatment, and releasing the therapeutically active agent at the site in need of treatment.
Owner:WAYNE STATE UNIV +1

Self-Assembly of Nanoparticles Through Nuclei Acid Engineering

A self-assembly nanodevice formed through nucleic acid engineering is disclosed. The nanodevice may include an array of nanoparticles. The nanodevice may further include a substrate that supports the array of nanoparticles. Each of the nanoparticles may be coordinated with a plurality of nucleic acids that are substantially free of Watson-Crick base-paring with nucleic acids coordinated with other nanoparticles. Methods of forming the nanodevice, as well as the microscopic organization of the nanoparticles are also disclosed. By manipulating the nucleic acids as capping ligands, the inter-particle distance may be extended to a greater range than nanotechnology based on alkyl ligands or nucleic acids base-pairing.
Owner:CORNELL UNIVERSITY

Thermal and thermoacoustic nanodevices and methods of making and using same

In one aspect, the present invention provides nano-scale heaters, such as nano-scale thermoacoustic loudspeakers comprising suspended metal nanobridges prepared using atomic layer deposition (ALD). The loudspeakers of the invention are capable of producing audible sound when stimulated with an electrical current or other energetic stimulus. In another aspect, the present invention provides methods of preparing and using such nanodevices.
Owner:UNIV OF COLORADO THE REGENTS OF

Method for preparing tw-dimension ordered nano ring, nano hole and nano self-assembling single layer film

The present invention relates to a method for preparing two-dimensional ordered nano ring, nano hole and nano self-assembled single-layer film. Said invention adopts double-substrate method to prepare three-dimensional ordered colloidal crystal body formed from monodisperse polymer microsphere or monodisperse SiO2 microsphere between two substrates, then the internal voids of colloidal crystal body between two substrates can be filled with inorganic or organic component solution with a certain concentration, and then the solvent is volatilized, the colloidal crystal template is removed, so that the two-dimensional ordered nano ring, nano hole and nano self-assembled single-layer film can be obtained on the substrate.
Owner:JILIN UNIV

Superlattice nano-device and method for making same

A nanodevice (1) for a desired function includes a substrate (11), a one-dimensional nanostructure (12), a functional layer (20) having a desired function, a conductive thin film electrode (30), and an insulating layer (40). The one-dimensional nanostructure is operatively extends from the substrate. The functional layer is surrounds at least a portion of the one-dimensional nanostructure. The conducting thin film electrode is surrounds / encompasses the functional layer. The insulating layer is positioned between the substrate and the conductive thin film electrode, thereby electrically insulating the one from the other. Further, the nanodevice can incorporate one or more functional units 50, each unit including a one-dimensional nanostructure and a respective functional layer. The units may or may not share the same conductive thin film electrode and / or insulating layer.
Owner:TSINGHUA UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products