Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

326 results about "Cell method" patented technology

Photochromic compounds

Various non-limiting embodiments disclosed herein relate generally to photochromic compounds, which may be thermally reversible or non-thermally reversible, and articles made therefrom. Other non-limiting embodiments relate to photochromic-dichroic compounds, which may be thermally reversible or non-thermally reversible, and articles made therefrom. For example, one non-limiting embodiment provides a thermally reversible, photochromic compound adapted to have at least a first state and a second state, wherein the thermally reversible, photochromic compound has an average absorption ratio greater than 2.3 in at least one state as determined according to CELL METHOD. Another non-limiting embodiment provides a photochromic compound comprising: (a) at least one photochromic group chosen from a pyran, an oxazine, and a fulgide; and (b) at least one lengthening agent L attached to the at least one photochromic group and represented by the formula —[S1]c-[Q1-[S2]d]d′-[Q2-[S3]e]e′-[Q3-[S4]f]f′—S5—P, which is described herein.
Owner:TRANSITIONS OPTICAL INC

Cell and sub-cell methods for imaging and therapy

Methods are disclosed to rapidly form and load cells and cell-derived vesicles. Loaded materials can include imaging agents, drugs and magnetic particles. Methods are also presented to additionally target the loaded cells or vesicles, leading to new forms of imaging, treatment, diagnosis, and detection by a large number of techniques. The preparation and use of reduced sized cells that retain subset characteristics of the parent cell are also described.
Owner:NANOPROBES

Device and method of using superparamagnetic nanoparticles in treatment and removal of cells

Methods and devices for selectively removing from a subject a target cell, pathogen, or virus expressing a binding partner on its surface are presented. In one embodiment, the device contains an excorporeal circuit, which includes, at least, a magnetic filter comprising a magnet and a removable, magnetizable substrate capable of capturing magnetic nanomaterials; and a pump in fluid communication with the magnetic filter, wherein the pump moves fluid through the excorporeal circuit. The magnet is capable of generating a magnetic field sufficient to capture magnetic nanomaterials in the magnetic field. In a preferred embodiment, the target cells are cancer cells and/or cells infected with pathogenic agents. The devices may be designed for extracorporeal or in vivo uses. Functionalized superparamagnetic nanoparticles are either mixed ex vivo with a biological fluid from the patient or injected into the patient. Then the biological fluid, which includes the nanoparticles is transported to the magnetic filter to remove any nanoparticles that are complexed to the target cells, pathogens, or virus, and any free nanoparticles. Optionally, the functionalized nanoparticles contain and deliver a therapeutic agent. In one embodiment, the therapeutic agent is released when the nanoparticle binds to the target cells, pathogens, or virus.
Owner:GEORGIA TECH RES CORP

Compositions and Methods to Monitor RNA Delivery to Cells

Methods and compositions for tracking or monitoring uptake of siRNA by mammalian cells are provided. The methods and compositions may be used to monitoring the silencing activity of the internalized siRNA. The compositions contain an siRNA, an optically or magnetically detectable nanoparticle such as a quantum dot and, optionally, a transfection reagent. Cells are contacted with an siRNA and an optically or magnetically detectable nanoparticle, optionally in the presence of a transfection reagent. Detection of internalized nanoparticles is indicative of siRNA uptake. The invention allows analysis, identification, processing, etc., of cells that have efficiently taken up siRNA. In one embodiment, cells are sorted into at least two populations based on the amount of siRNA taken up.
Owner:RGT UNIV OF CALIFORNIA

Polymer-coated substrates for immobilization of biomolecules and cells

ActiveUS20030198968A1Rapid and uniform introductionVersatile and cost-effective processBioreactor/fermenter combinationsSequential/parallel process reactionsSide chainPendant group
Methods for preparing a substrate for the arraying and immobilizing of biomolecules or cells are described. The methods include providing a solid support and depositing by a chemical plasma-mediated polymerization process a polymeric coating on the surface. The polymeric coating comprises at least one pendant functional group capable of attaching a biomolecule or a cell. A material of the polymeric coating is preferably selected in such a way that its surface properties enhance binding between the pendant group and the biomolecule or cell. A substrate for the immobilization of biomolecules and cells is also provided. The substrate comprises a solid support made of a polymeric material. The solid support has at least one first pendant functional group suitable for attaching a first biomolecule or a first cell on its surface. The substrate further comprises a polymeric coating deposited on the surface of the substrate. The polymeric coating increases the attachment of the first biomolecule or the first cell to the first functional group.
Owner:BECKMAN COULTER INC

Methods of Forming Field Effect Transistors and Capacitor-Free Dynamic Random Access Memory Cells

Methods of forming capacitor-free DRAM cells include forming a field effect transistor by forming a first semiconductor wafer having a channel region protrusion extending therefrom and surrounding the channel region protrusion by an electrical isolation region. A portion of a backside of the first semiconductor wafer is then removed to define a semiconductor layer having a primary surface extending opposite the channel region protrusion and the electrical isolation region. A gate electrode is formed on the primary surface. The gate electrode extends opposite the channel region protrusion. The source and drain regions are formed in the semiconductor layer, on opposite sides of the gate electrode.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products