Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1361results about "General/multifunctional contrast agents" patented technology

Systems, compositions, and methods for local imaging and treatment of pain

Pain factors are labeled with targeted agents or markers delivered into the body. The labeled pain factors are imaged with appropriate imaging tools in a manner allowing selective identification and localization of areas of pain source or transmission. The labeled pain factors allow spatial differentiation in the imaging sufficient to specify the location of the pain so as to drive therapeutic decisions and techniques in order to treat the pain. Pain factors labeled and imaged in this manner may include one or more of nerve factors, blood vessel factors, cellular factors, and inflammation factors. Labeled markers may include for example radioactive materials (e.g. tritiated or iodinated molecules) or other materials such as metal (e.g. gold) nanoparticles. Intermediary binding materials may be used, such as for example bi-specific antibodies. Therapeutic components of the system and method include for example localized energy delivery or ablation treatments, or local drug or other chemical delivery. Locations containing pain factor selectively bound by targeted agents are selectively treated with directed energy into a region containing the targeted agent bound to the pain factor.
Owner:RGT UNIV OF CALIFORNIA

Multimodal silica-based nanoparticles

The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo. In order to target a specific cell type, the nanoparticle may further be conjugated to a ligand, which is capable of binding to a cellular component associated with the specific cell type, such as a tumor marker. In one embodiment, a therapeutic agent may be attached to the nanoparticle. To permit the nanoparticle to be detectable by not only optical fluorescence imaging, but also other imaging techniques, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), computerized tomography (CT), bioluminescence imaging, and magnetic resonance imaging (MRI), radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle.
Owner:SLOAN KETTERING INST FOR CANCER RES +1

D-amino acid peptides

The present invention provides compounds of the formula X—R1-D-[Dpr, Orn or Lys](A)-R2(Z)-D-[Dpr, Orn or Lys](B)—R3(Y)—NR4R5; or R1(X)-D-[Dpr, Orn or Lys](A)-R2(Z)-D-[Dpr, Orn or Lys](B)—R3(Y)—NR4R5, in which X is a hard acid cation chelator, a soft acid cation chelator or Ac—, R1, R2 and R3 are independently selected from a covalent bond or one or more D-amino acids that can be the same or different, Y is a hard acid cation chelator, a soft acid cation chelator or absent, Z is a hard acid cation chelator, a soft acid cation chelator or absent, and A and B are haptens or hard acid cation chelators and can be the same or different, and R4 and R5 are independently selected from the group consisting of hard acid cation chelators, soft acid cation chelators, enzymes, therapeutic agents, diagnostic agents and H. The present invention also provides methods of using these compounds and kits containing the compounds.
Owner:IMMUNOMEDICS INC

Modeling of Pharmaceutical Propagation

A method of modeling propagation of a pharmaceutical fluid in a patient, includes: collecting data corresponding to a time response curve resulting from injection of the fluid; and determining at least one mathematical model describing the data. The mathematical model can, for example, be a model which is not determined by a continuous or a discrete-time Fourier transform of the data. A method of controlling injection of a pharmaceutical fluid into a patient using an injector in a medical procedure, includes: collecting data corresponding to a patient response curve resulting from injection of the fluid; determining at least one mathematical model describing the data; and controlling the injector during the medical procedure to control injection of the fluid into the patient to create patient response at least in part on the basis of the mathematical model. A method of controlling injection of a contrast medium into a patient using an injector in a medical imaging procedure using an imaging scanner, includes: determining at least one mathematical model to predict a time enhancement response resulting from injection of the contrast medium; determining an injection protocol to approximate a predetermined time enhancement response in the patient by determining a constrained input solution to the mathematical model; and using the injection protocol to control the injector during the medical imaging procedure to control injection of the contrast medium into the patient to create an image of a region of interest.
Owner:BAYER HEALTHCARE LLC

Medical and Imaging Nanoclusters

In one embodiment the present invention discloses a nanocluster or a nanorose composition comprising two or more closely spaced nanoparticles each comprising one or more metals, metal oxides, inorganic substances, or a combination thereof and one or more stabilizers. The stabilizers are in contact with the two or more closely spaced nanoparticles to form a nanocluster composition in which the inorganic weight percentage is greater than 50% and the average size is below 300 nm, and the nanocluster composition has magnetic properties, optical properties or a combination of both.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Methods and compositions for immunotherapy and detection of inflammatory and immune-dysregulatory disease, infectious disease, pathologic angiogenesis and cancer

Methods and compositions for immunotherapy of inflammatory and immune-dysregulatory diseases, using multispecific antagonists that target at least two different markers are disclosed. The different targets include (i) proinflammatory effectors of the innate immune system, (ii) coagulation factors, and (iii) targets specifically associated with an inflammatory or immune-dysregulatory disorder, with a pathologic angiogenesis or cancer, or with an infectious disease, wherein the targets included in group (iii) are neither a proinflammatory effector of the immune system nor a coagulation factor. When the multispecific antagonist reacts specifically with a target associated with an inflammatory or immune-dysregulatory disorder, with a pathologic angiogenesis or cancer, or with an infectious disease, it also binds specifically with at least one proinflammatory effector of the immune system or at least one coagulation factor. Thus, the multispecific antagonist contains at least one binding specificity related to the diseased cell or condition being treated and at least one specificity to a component of the immune system, such as a receptor or antigen of B cells, T cells, neutrophils, monocytes and macrophages, and dendritic cells, a modulator of coagulation, or a proinflammatory cytokine. The multispecific antagonists are used in the treatment of various diseases that are generated or exacerbated by, or otherwise involve, proinflammatory effectors of the innate immune system or coagulation factors. Such diseases more particularly include acute and chronic inflammatory disorders, autoimmune diseases, giant cell arteritis, septicemia and septic shock, coagulopathies (including diffuse intravascular coagulation), neuropathies, graft versus host disease, infectious diseases, acute respiratory distress syndrome, granulomatous diseases, transplant rejection, asthma, cachexia, myocardial ischemia, and atherosclerosis. Other diseases also responsive to these therapies include cancers and conditions with pathological angiogenesis.
Owner:IMMUNOMEDICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products