Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

89 results about "Axon growth" patented technology

Polypyrrole biological conductive hydrogel, as well as preparation method and application thereof

The invention relates to polypyrrole biological conductive hydrogel, as well as a preparation method and application thereof. The preparation method comprises the following steps; preparing carboxymethylchitosan hydrogel from carboxymethyl chitosan by using a crosslinking agent under a certain condition, and performing freeze-drying treatment; performing electrochemical synthesis on a pyrrole monomer to obtain polypyrrole, adding a dopant into the polypyrrole to perform modification and performing ball-milling and crushing to enable the particle size to be matched with the pore diameter of pores of the carboxymethylchitosan hydrogel; blending nerve growth factors into water, adding modified polypyrrole particles, stirring and dispersing uniformly, putting the carboxymethylchitosan hydrogel to enable the solution to be completely absorbed, adding water, vibrating, and completely swelling and balancing to obtain the polypyrrole biological conductive hydrogel. When the polypyrrole biological conductive hydrogel is applied to neural restoration, sustained release of neurotrophic factors can be completed, nerve cells can be subjected to certain electrical stimulation through bioelectrical or external electrical stimulation, proliferation and differentiation of the nerve cells are promoted through double effects of electric stimulation and neurotrophic factor induction, and nerve axon growth is guided.
Owner:深圳南泥湾科技有限公司

Device for promoting regeneration of an injured nerve, a kit and a biodegrade sheet for preparing such a device

The invention relates to promotion of a process for regeneration of an injured nerve using a plurality of guiding means, preferably a plurality of guiding fibres, presenting an in vivo biodegradability being such that at least a majority of said guiding means becomes essentially disintegrated by degradation (and / or dissolution) during a pre-contact period extending from application of the device at the injured nerve up to a first occurrence of a re-established (regenerated) contact between the ends of the injured nerve. During a post-contact period extending from the end of the pre-contact period and up to the end of the regeneration process, the disintegrated guiding means will provide no substantial axon growth guiding function and no substantial axon growth blocking effect.
Owner:AXONGEN

Conductive parallel fiber membrane capable of promoting rapid repair of peripheral nervous tissues and preparation method of conductive parallel fiber membrane

The invention relates to a conductive parallel fiber membrane which is capable of promoting rapid repair of peripheral nervous tissues and is connected to an extracellular matrix, wherein the thin film (the fiber membrane) can serve as a biofunctional nerve scaffold. The conductive parallel fiber membrane which is connected to the extracellular matrix and is of a core-shell structure is prepared by virtue of a three-step method, namely preparing parallel fibers through electrostatic spinning, covering conductive polypyrrole through electrochemical oxidation, and conducting human skin fibroblast culture and splitting cells by virtue of a triton x-100 / ammonia water mixed solution. According to the invention, the composite fiber membrane, by virtue of the parallel structure, can guide the growth of nerve fibers in a directional mode, by virtue of the extracellular matrix, adhesion of the nerve cells and axon thereof is improved, and by virtue of the conductive polymer (the conductive polypyrrole), the growth of the nerve axon is promoted through electric stimulation; and with a synergistic effect among the three means, the regeneration and repair of nerves are promoted. A preparation device adopted by the invention is simple and easy, simple to operate, wide in material source and low in cost; and the prepared nerve scaffold is good in biocompatibility and functionality, and the nerve scaffold is expected to be applied to clinical field in the future.
Owner:SICHUAN UNIV

Nanoparticles loaded with neurotrophic factors, and preparation and applications thereof

The invention discloses nanoparticles loaded with therapeutic factors or neurotrophic factors. The nanoparticles are made of a high molecular material; the high molecular material is composed of biocompatible positively charged epsilon-polylysine and negatively charged heparin; the mass ratio of epsilon-polylysine to heparin ranges from 1:20 to 1:1; and average particle size grain diameter of the nanoparticles ranges from 100 to 400nm. The epsilon-polylysine-heparin nanoparticles are taken as carriers for loading of neurotrophic factors, and are high in biocompatibility, and stable in biochemical properties. The nanoparticles loaded with neurotrophic factors are capable of promoting cell axon growth effectively via sustained release.
Owner:NANTONG UNIVERSITY

Gene Delivery Vehicles in the Treatment of Neurodegenerative Diseases

ActiveUS20140100265A1Promoting axon regenerationSugar derivativesPeptide/protein ingredientsGene deliveryAxon growth
Currently no therapies that provide either protection or restoration of neuronal function for adult onset neurodegenerative diseases such as Parkinson's disease exist. Many clinical efforts to provide such benefits by infusion of neurotropic factors have failed. An alternative approach such as viral construct transduction may be used to directly activate the intracellular signaling pathways that mediate neurotrophic effects and induce axon growth. Viral construct transduction of dopaminergic neurons with a constitutively active human form of the p70S6K gene—hp70S6K (CA)—was shown to induce axon regeneration from living dopaminergic cell bodies that had no living axons.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Microfluidic embryo and gamete culture systems

A robotic microfluidic incubator system has a thin transparent sidewall and close proximity of the embryo / oocyte / cultured cells to the sidewall allow close approach of a side view microscope with adequate focal length for mid to high power. This arrangement permits microscopic examination of multiple culture wells when arranged in rows (linear or along the circumference of a carousel). Manual or automated side to side movement of the linear well row, or rotation of the carousel, allows rapid inspection of the contents each well. Automated systems with video capability also allow remote inspection of wells by video connection or Internet connection, and automated video systems can record oft-hours inspections or time lapse development in culture (i.e. embryo cell division progression, or axon growth in neuron cell cultures).
Owner:CRAIG H RANDALL

Treatment of macular degeneration with ADP-ribosyl transferase fusion protein therapeutic compositions

The Rho family GTPases regulates axon growth and regeneration. Inactivation of Rho with C3, a toxin from Clostridium botulinum, can stimulate regeneration and sprouting of injured axons. The present invention provides novel chimeric C3-like Rho antagonists. These new antagonists are a significant improvement over C3 compounds because they are 3-4 orders of magnitude more potent to stimulate axon growth on inhibitory substrates than recombinant C3. The invention further provides evidence that these compounds promote repair when applied to the injured mammalian central nervous system.
Owner:BIOAXONE BIOSCI

Nogo Receptor Binding Small Molecules to Promote Axonal Growth

InactiveUS20110065715A1Promote regenerationPromotes neurite outgrowthBiocideSenses disorderDiseaseHuntingtons chorea
The present invention provides a method for identifying compounds which modulate the interaction of Nogo and Nogo receptor (NgR). The present invention also provides compounds that modulate the interaction of Nogo and Nogo receptor (NgR), the use of such compounds and compositions in the treatment or amelioration of conditions diseases or disorders, such as spinal cord injury, traumatic brain injury, stroke, multiple sclerosis, ALS, Huntington's disease, Alzheimer's disease, Parkinson's disease, epilepsy, Schizophrenia or schizoaffective disorders.
Owner:YALE UNIV

DNA vaccine for promoting regeneration and functional rehabilitation of nerves of central system

InactiveCN101716338AAvoid non-specific immune responseImprove immunityNervous disorderGenetic material ingredientsAntigenA-DNA
The invention provides a DNA vaccine for promoting regeneration and functional rehabilitation of nerves of a central system. The vaccine consists of antigen genes and eukaryon expression vectors, wherein the antigen genes are fusion genes which are formed by linearly connecting gene fragments in the LRR structure field of the coding LINGO-1, gene fragments in the EGFL structure field of the coding TN-R and gene fragments of the 1011st to the 1271st amino acid of the coding neurocan in sequence; and two of the gene fragments are connected by the DNA sequences coding three alanine. The DNA vaccine can express the fusion genes of the LRR structure field of the LINGO-1, the EGFL structure field of the TN-R and the 1011st to the 1271st amino acid of the neurocan, stimulate the human body to generate various antibodies of the nerve regeneration inhibiting factor, resist the activity of the axon growth inhibiting factor, and provide a good microenvironment for the regeneration and the functional rehabilitation of the nerves of the central system.
Owner:SOUTHERN MEDICAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products