Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

91results about How to "Light coupling" patented technology

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Organic light emitting diode backlight inside LCD

InactiveUS20060109397A1Light coupling efficiencyMaximizes optical efficiencyDiodeNon-linear opticsLiquid-crystal displayPolarizer
A planar organic light emitting diode (OLED) light source is processed on one of the substrates of a liquid crystal display (LCD) and sealed pin-hole free such that LCD processes, including internal polarizer, can be carried out on OLED without affecting the integrity of OLED and LCD. Both devices are held in alignment and hermetaically sealed between two substrates thus forming an integrated device and on application of suitable voltages to these devices OLED generates light and efficiently couples the light to LCD to function efficiently as a full color display.
Owner:ORGANIC LIGHTING TECH

Superlens and a method for making the same

A superlens for controlling the size and the phase of an electromagnetic beam that passes through it, and a method for independently controlling the horizontal and vertical focusing of the electromagnetic beam using the superlens is provided. The superlens comprises a vertically GRIN multi-layer structure with one or more horizontally curved sidewalls. The vertical focusing is controlled by varying the longitudinal thickness of the multi-layer structure. The horizontal focusing is controlled by varying the profile and the radius of curvature of the horizontally curved sidewalls. Varying the thickness and radius of curvature is done by etching. Also provided is a method for making the superlens.
Owner:HO SENG TIONG

Thermally assisted magnetic recording head and magnetic recording apparatus

A second waveguide is formed near a first waveguide for guiding light to the vicinity of a main pole of a thermally assisted magnetic recording head, and a portion of light propagated through the waveguide 1 is branched to the second waveguide. The light transmitting in the second waveguide is detected by a photodetector to detect an intensity of the light propagated through the first waveguide. In the magnetic recording apparatus, an intensity of a semiconductor laser is decreased when an amount of light incident to the photodetector is large and the intensity of the semiconductor laser is increased when the amount of light incident to the photodetector is small. By constituting a feedback loop as described above, the intensity of the light propagated through the first waveguide is kept constant.
Owner:HITACHI LTD

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Generating optical pulses via a soliton state of an optical microresonator

A light pulse source (100), being adapted for generating repetitive optical pulses, comprises a continuous wave (cw) laser (10) being arranged for providing cw laser light, an optical microresonator (20) being made of a resonator material, which has a third order (Kerr) nonlinearity and an anomalous resonator dispersion, wherein the cw laser (10) is arranged for coupling the cw laser light into the optical microresonator (20), which, at a predetermined relative detuning of the cw laser (10) and the optical microresonator (20), is capable of including a light field in a soliton state, wherein soliton shaped pulses can be coupled out of the optical microresonator (20) for providing the repetitive optical pulses, and a tuning device (30) being arranged for creating and maintaining the predetermined relative detuning of the cw laser (10) and the optical microresonator (20) based on a tuning time profile being selected in dependency on a thermal time constant of the optical microresonator (20) such that the soliton state is achieved in a thermal equilibrium state of the optical microresonator (20). Furthermore, a method of generating repetitive optical pulses is described based on soliton shaped pulses coupled out of an optical microresonator (20) is described.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Depth-of-interaction scintillation detectors

The invention disclosed herein relates to a scintillation detector for registering the position of gamma photon interactions, an comprises an array of two or more elongated first and second scintillation crystal elements connected together along their respective long sides, and an array of discrete photosensitive areas disposed on a common substrate of a solid-state semiconductor photo-detector. The array of first and second scintillation crystal elements have proximal output windows optically coupled to the array of discrete photosensitive areas in a one-to-one relationship. The invention may be characterized in that the first and second scintillation crystal elements include a rooftop portion at their distal ends, wherein the rooftop portion optically couples one of the first and second scintillation crystal elements to the other and is configured to reflect and transmit light resulting from a gamma photon interaction from one of the first and second scintillation crystal elements to the other.
Owner:ZECOTEK IMAGING SYST PTE

Projection lighting apparatus for marking and demarcation

A projection lighting apparatus is disclosed for marking and demarcation applications in airports, waterways, and industrial environments. The lighting apparatus comprises a plurality of high intensity LEDs with their output coupled to the input ends of a plurality of optical fibers. The output ends of the optical fibers are packaged to form a desired illumination pattern. The illumination pattern is projected onto the target surface through a secondary optical system for marking and demarcation enhancement.
Owner:BWT PROPERTY

Linear Fiber Array Mount To a Spectrometer

A coupler for coupling a linear fiber array to a spectrometer is provided, the coupler having a tube, a linear fiber bundle array inserted through the tube, an alignment mechanism for aligning the linear fiber bundle array with a slit on the spectrometer, and a locking mechanism for locking the linear fiber bundle array to the tube. Further, a method for coupling a linear fiber array to a spectrometer is provided, the method having the steps of inserting a linear fiber bundle array through a tube, aligning the linear fiber bundle array with a slit on the spectrometer, and locking the linear fiber bundle array to the tube once it is aligned with the slit on the spectrometer.
Owner:LAMBDA SOLUTIONS

Organic laser device

To provide a small and lightweight organic laser device which can be manufactured in a reproductive manner and from which laser light with a desired wavelength can be obtained. A first substrate provided with a light-emitting element having a light-emitting layer between a pair of electrodes and a second substrate provided with a laser medium including a laser dye face each other and one of the pair of electrodes, which is placed between the light-emitting layer and the laser medium, has a light transmitting property. With such a structure, a laser device with which a laser medium and a light source are integrated can be provided.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products