Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

81results about "Organic grignard reactions" patented technology

Catalyst system comprising transition metal and imidazoline-2-ylidene or imidazolidine-2-ylidene

This invention provides a catalyst system useful in many coupling reactions, such as Suzuki, Kumada, Heck, and amination reactions. The catalyst system of the present invention makes use of N-heterocyclic carbenes or their protonated salts. The composition of the catalyst system comprises at least one transition metal compound and at least one N-heterocyclic carbene or its protonated salt. This invention further provides novel N-heterocyclic carbenes and their protonated salts. One type of N-heterocyclic carbene used in this invention is an imidazolinc-2-ylidene wherein the 1 and 3 positions are each, independently, substituted by an aromatic group in which each ortho position is, independently, substituted by a secondary or tertiary group which has at least three atoms.
Owner:NEW ORLEANS RES & TECH FOUND UNIV OF +1

Use of a catalyst system comprising nickel palladium or platinum and imidazoline-2-ylidene or imidazolidine-2-ylidene in stille coupling reactions

This invention provides a process for conducting Stille coupling reactions. The processes of the present invention make use of N-heterocyclic carbenes as ancillary ligands in Stille couplings of aryl halides. A Stille coupling can be carried out by mixing, in a liquid medium, at least one strong base; at least one aryl halide or aryl pseudohalide in which all substituents are other than stannyl groups, wherein the aryl halide has, directly bonded to the aromatic ring(s), at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom, and an iodine atom; at least one organotin compound wherein the tin atom is quaternary, wherein one group bound to the tin atom is unsaturated at the alpha or beta position, and wherein each of the remaining groups bound to the tin atom is a saturated group; at least one metal compound comprising at least one metal atom selected from nickel, palladium, and platinum, wherein the formal oxidation state of the metal is zero or two; and at least one N-heterocyclic carbene. One preferred type of N-heterocyclic carbene is an imidazoline-2-ylidene of the formulawherein R1 and R2 are each, independently, alkyl or aryl groups having at least 3 carbon atoms, R3 and R4 are each, independently, a hydrogen atom, a halogen atom, or a hydrocarbyl group.
Owner:RES & TECH FOUND UNIV OF NEW ORLEANS

Use of a catalyst system comprising nickel, palladium, or platinum and imidazoline-2-ylidene or imidazolidine-2-ylidene in kumada coupling reactions

This invention provides a process for conducting Kumada coupling reactions. The processes of the present invention make use of N-heterocyclic carbenes as ancillary ligands in Kumada couplings of aryl halides. A Kumada coupling can be carried out by mixing, in a liquid medium, at least one aryl halide, wherein the aryl halide has, directly bonded to the aromatic ring(s), at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom, and an iodine atom; at least one Grignard reagent; at least one metal compound comprising at least one metal atom selected from nickel, palladium, and platinum, wherein the formal oxidation state of the metal is zero or two; and at least one N-heterocyclic carbene. One preferred type of N-heterocyclic carbene is an imidazoline-2-ylidene of the formulawherein R1 and R2 are each, independently, alkyl or aryl groups having at least 3 carbon atoms, R3 and R4 are each, independently, a hydrogen atom, a halogen atom, or a hydrocarbyl group. Homocoupling of aryl pseudohalides is also feasible using the processes of this invention.
Owner:UNIV OF NEW ORLEANS RES TECH FOUND

Use of catalyst system comprising nickel, palladium, or platinum and imidazoline-2-ylidene or imidazolidine-2-ylidene in amination reactions

This invention provides a process for conducting amination reactions. The processes of the present invention make use of N-heterocyclic carbenes as ancillary ligands in aminations of aryl halides and aryl pseudohalides. An amination can be carried out by mixing, in a liquid medium, at least one strong base; at least one aryl halide or aryl pseudohalide in which all substituents are other than amino groups, wherein the aryl halide has, directly bonded to the aromatic ring(s), at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom, and an iodine atom; at least one primary amine and / or at least one secondary amine; at least one metal compound comprising at least one metal atom selected from nickel, palladium, and platinum, wherein the formal oxidation state of the metal is zero or two; and at least one N-heterocyclic carbene. One preferred type of N-heterocyclic carbene is an imidazoline-2-ylidene of the formulawherein R1 and R2 are each, independently, alkyl or aryl groups having at least 3 carbon atoms, R3 and R4 are each, independently, a hydrogen atom, a halogen atom, or a hydrocarbyl group.
Owner:UNIV OF NEW ORLEANS RES TECH FOUND

Method of preparing organomagnesium compounds

The present invention is directed to a reagent for use in the preparation of organomagnesium compounds as well as to a method of preparing such organomagnesium compounds. The present invention furthermore provides a method of preparing functionalized or unfunctionalized organic compounds as well as the use of the reagents of the present invention in the preparation of organometallic compounds and their reaction with electrophiles. Finally, the present invention is directed to the use of lithium salts—LiY in the preparation of organometallic compounds and their reactions with electrophiles and to an organometallic compound which is obtainable by the disclosed method.
Owner:LUDWIG MAXIMILIANS UNIV MUNCHEN

Catalytic carbon-carbon bond formation

The present invention mainly relates to a carbon-carbon bond formation catalyzed by a complex comprising a novel and stable ligand and a metal center. The ligand uses a ring, particularly a phenyl group, or a hydrocarbon group to link an amino group and PR1R2, NR1R2, OR1, SR1, or AsR1R2 group for stabling the structure of the ligand.
Owner:NAT SUN YAT SEN UNIV

S-4- methyloctane derivate, synthetic method thereof and application thereof to (S)-3-methyl-heptanoate sythesis

The invention relates to an (S)-4-methyloctane compound and a synthesis method thereof. The compound can be used for the synthesis of optically pure (S)-3-methylheptanoic acid. The structural formula of the (S)-4-methyloctane compound is the formula and compared with the existing methods, the method for the synthesis of the optically pure (S)-3-methylheptanoic acid by utilizing the invention is easier and more convenient to operate, efficient and conducive to the utilization of steroidal sapogenins oxidative degraded waste.
Owner:SHANGHAI INST OF ORGANIC CHEMISTRY - CHINESE ACAD OF SCI

Method of preparing 1,5-amino alcohol

The invention discloses a method of preparing 1,5-amino alcohol, wherein the method includes a following step of performing a three-component reaction to an imine represented as the formula II, a Grignard reagent represented as the formula III, a catalyst, an oxidation agent and an additive in a solvent to obtain the 1,5-amino alcohol which is represented as the formula I. The invention achieves simplified synthesis of the 1,5-amino alcohol, wherein the ratio of diastereoisomer of the 1,5-amino alcohol can reach 8:1 and the ratio can reach 99%. The raw materials are low in cost and easy to obtain. The method is mild in reaction conditions, is simple in operations and has an industrial production potential.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Solutions of anhydrous lanthanide salts and its preparation

The present invention relates to anhydrous solutions of MX3-Z LiA in a solvent, wherein M is a lanthanide including lanthanum, or yttrium or indium; z>0; and X and A are independently or both monovalent anions, preferably Cl, Br or I. The solution is readily prepared by dissolving or suspending MX3 or its hydrate and z equiv LiA in water or hydrophilic solvents, or mixtures thereof, removing the solvent under vacuum and dissolving the resulting powder in another solvent. The solution of MX3-Z LiA can advantageously be used e.g. in addition reactions of Grignard reagents to ketones and imines. Even the catalytic use of MX3-Z LiA is possible.
Owner:LUDWIG MAXIMILIANS UNIV MUNCHEN

Process for the production of tertiary alcohols

Tertiary alcohols are prepared by reacting carboxylic esters with Grignard reagents in ethereal solvents in the presence of lanthanum trichloride and lithium chloride. The method is particularly suitable for the production of (aS)-a-[3-[(1E)-2-(7-chloro-2-quino- linyl)ethenyl]phenyl]-2-(1-hydroxy-1-methylethyl)benzenepropanol of formula (A) which is an intermediate in the production of montelukast.
Owner:LONZA LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products