Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

479 results about "Tissue engineer" patented technology

Method and device for treating osteoarthritis, cartilage disease, defects and injuries in the human knee

A method of determining the voltage and current output required for the application of specific and selective electric and electromagnetic signals to diseased articular cartilage in the treatment of osteoarthritis, cartilage defects due to trauma or sports injury, or used as an adjunct with other therapies (cell transplantation, tissue-engineered scaffolds, growth factors, etc.) for treating cartilage defects in the human knee joint and a device for delivering such signals to a patient's knee. An analytical model of the human knee is developed whereby the total tissue volume in the human knee may be determined for comparison to the total tissue volume of the diseased tissue in the animal model using electric field and current density histograms. The voltage and current output used in the animal model is scaled based on the ratio of the total tissue volume of the diseased tissue of the human to the total tissue volume of the diseased tissue in the animal model and the resulting field is applied to the diseased tissue of the human using at least two electrodes applied to the knee or a coil or solenoid placed around the knee. The voltage of the signal applied to the electrodes, coil or solenoid is varied based on the size of the knee joint; larger knee joints require larger voltages to generate the effective electric field.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Use of three-dimensional microfabricated tissue engineered systems for pharmacologic applications

The present invention generally relates to a combination of the fields of tissue engineering, drug discovery and drug development. It more specifically provides new methods and materials for testing the efficacy and safety of experimental drugs, defining the metabolic pathways of experimental drugs and characterizing the properties (e.g., side effects, new uses) of existing drugs. Preferably, evaluation is carried out in three-dimensional tissue-engineered systems, wherein drug toxicity, metabolism, interaction and / or efficacy can be determined.
Owner:CHARLES STARK DRAPER LABORATORY +1

Three-dimensional fiber-based aerogel tissue engineering scaffold and preparation method thereof

ActiveCN103285424AImprove pore structureWide pore structure adjustable rangeProsthesisFiberSolvent
The invention relates to a preparation method of a three-dimensional fiber-based aerogel tissue engineering scaffold and a product thereof. The preparation method comprises the following steps of: firstly dispersing fibers in solvents to form turbid liquid; secondly curing the turbid liquid to form cured pieces; thirdly removing cured solvents to form non-crosslinked fiber-based aerogel; finally carrying out crosslinking stabilization treatment and then carrying out sterilization treatment, thus obtaining the three-dimensional fiber-based aerogel tissue engineering scaffold. The product is a three-dimensional network-shaped material formed through mutual penetration and stagger of fibers. The fiber crossing points are effectively interconnected through non-hydrogen-bond bonding. The three-dimensional fiber-based aerogel tissue engineering scaffold has volume density of 0.1-500mg / cm<3>, average pore size of 0.01-2000mu m and specific surface area of 0.2-2000m<2> / g. The preparation method and the product have the advantages that the preparation process is simple; the raw material limitations are less; the aerogel tissue engineering scaffold product has good flexibility, connectivity and tissue growing environment and has broad application prospects in the tissue engineering field.
Owner:DONGHUA UNIV

Method and device for treating osteoarthritis, cartilage disease, defects and injuries in the human knee

A method of determining the voltage and current output required for the application of specific and selective electric and electromagnetic signals to diseased articular cartilage in the treatment of osteoarthritis, cartilage defects due to trauma or sports injury, or used as an adjunct with other therapies (cell transplantation, tissue-engineered scaffolds, growth factors, etc.) for treating cartilage defects in the human knee joint and a device for delivering such signals to a patient's knee. An analytical model of the human knee is developed whereby the total tissue volume in the human knee may be determined for comparison to the total tissue volume of the diseased tissue in the animal model using electric field and current density histograms. The voltage and current output used in the animal model is scaled based on the ratio of the total tissue volume of the diseased tissue of the human to the total tissue volume of the diseased tissue in the animal model and the resulting field is applied to the diseased tissue of the human using at least two electrodes applied to the knee or a coil or solenoid placed around the knee. The voltage of the signal applied to the electrodes, coil or solenoid is varied based on the size of the knee joint; larger knee joints require larger voltages to generate the effective electric field.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Method for making a porous calcium phosphate article

The present invention discloses a method for making a porous calcium phosphate article including i) preparing a shaped article from a paste containing a calcium phosphate cement, a pore-forming powder and a setting liquid; ii) immersing the shaped article in an immersing liquid for a period of time so that the pore-forming powder is dissolved in the immersing liquid, creating pores in said shaped article; and iii) removing the resulting porous shaped article from the immersing liquid, wherein the resulting porous shaped article has an improved compressive strength. The porous shaped calcium phosphate article of the present invention may be used as a tissue-engineered scaffold, medical implant or a reinforcing constituent of a composite.
Owner:CALCITEC

Production of tissue engineered heart valves

ActiveUS20060253192A1Avoid it happening againMore of their natural flexibilityHeart valvesNanoinformaticsProgenitorSmooth muscle
The invention is directed to methods for preparing artificial heart valves by preconditioning a matrix seeded with endothelial cells and smooth muscle cells differentiated from isolated progenitor cells. These cell seeded matrices are exposed to fluid conditions that mimic blood flow through the heart to produce tissue engineered heart valves that are analogous to native heart valves.
Owner:WAKE FOREST UNIV HEALTH SCI INC

Acellular tissue matrix composite and preparation method thereof

The invention discloses an acellular tissue matrix composite and a preparation method thereof. The composite is formed by smashing an acellular tissue matrix, adding water or digestive juice for digestion, evenly mixing the product with polyelectrolyte and conducting freezing and drying, wherein the acellular tissue matrix is obtained by conducting acellular implantation on animal tissue. The product is in a porous sponge shape, in-situ implantation induction host vascularization and cell proliferation and growth are achieved with the composite as the support, and therefore tissue healing is promoted, and the composite can be used for tissue repairing such as wound surface repairing, subcutaneous filling and tissue-engineered muscle establishing. By means of the composite, active growth factors are kept, the support with complicated shape and adjustable size can also be established, and the micro-porous size, porosity and degradation time can be adjustable.
Owner:广州昕生医学材料有限公司

Tissue engineered blood vessels and apparatus for their manufacture

The invention is a tissue engineered blood vessel (TEBV) made from a cultured fibroblast sheet rolled into a multilayer vessel which has sufficient burst strength to withstand physiological blood pressure without the inclusion of smooth muscle cells or synthetic scaffolding. The TEBV is made in a bioreactor having an enclosed chamber, a sheet growth module, a rollable mandrel, and a clamp for holding the sheet to the mandrel for rolling.
Owner:NIGHTINGALE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products