Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1459 results about "Thermoplastic composites" patented technology

Method for manufacture of minimum porosity, wrinkle free composite parts

A process and associated apparatus used to prepare a thermoplastic composite from a plurality of plies of thermoplastic resin prepregs. The prepregs are formed into a composite structure under two chambers; a rigid outer chamber (of any convenient size or shape) and a second flexible inner chamber containing a prepreg lay-up. The absolute pressures are reduced concurrently in a stepwise method in both chambers. This concurrent, stepped pressure reduction is accomplished at a rate which prevents the vacuum bag from moving far from the prepregs, and prevents wrinkles from forming in the prepregs. Pinching off the diffusion paths required for the removal of unwanted gases is eliminated. The lay-up is then heated and the absolute pressure in the outer rigid chamber is increased. This pressure constrains the flexible inner chamber during out-gassing of the thermoplastic resin, preventing wrinkles from forming in the prepregs. The absolute pressure in the outer rigid chamber is increased to atmospheric pressure or greater causing the prepregs to consolidate. A low absolute pressure is maintained in the flexible inner chamber. The temperature is then increased to the cure temperature of the resin and held for a time sufficient for the resin to cure. The resulting consolidated thermoplastic resin is substantially void free and detectable wrinkles are absent.
Owner:HALE HAROLD P

Polyolefin wood fiber composite

An improved composite structural member comprising a complex profile structural member, made of a composite comprising a polypropylene polymer and a wood fiber. The material is useful in conventional construction applications. The complex profile, in the form of an extruded thermoplastic composite member can be used in residential and commercial structures as described. Preferably, the structural member is used in the manufacture of the fenestration components such as windows and doors. Such linear members are designed with specifically configured cross-sectional shapes to form structural elements in the fenestration units. Structural elements must possess sufficient strength, thermal stability and weatherability to permit the manufacture of a structurally sound window unit that can be easily installed into a rough opening but can maintain its attractive appearance and structural integrity over the life of the window unit often twenty years or more. The structural member comprises a hollow complex cross-section with at least one structural web or one fastener web formed within the component. The exterior of the extruded component has a visible capstock layer and is shaped and adapted for installation in rough openings. The exterior also contains shape and components capable of supporting the elements of the fenestration unit such as a window, sash or movable door unit. The improved polypropylene structural members have unique advantages and can be assembled in thermoplastic weld processes.
Owner:ANDERSEN CORPORATION

Thermoplastic composite material with improved smoke generation, heat release, and mechanical properties

A fiber-reinforced thermoplastic composite material having an advantageous combination of smoke generation, heat release, and mechanical property characteristics. The composite generally comprises a fiber-reinforced thermoplastic core containing discontinuous reinforcing fibers bonded together with one or more thermoplastic resins. The core material may further comprise at least one first skin material applied to a first surface of the core and / or one or more second skin material applied to a second surface of the core material. The thermoplastic core material has a maximum smoke density Ds (4 minutes) of less than 200 as measured in accordance with ASTM E662, a maximum heat release (5 minutes) of less than 65 kW / m2 as measured in accordance with FAA Heat release test FAR 25.853 (a) Appendix F, Part IV (OSU 65 / 65), and an average total heat release (2 minutes) of less than 65 kW / m2 as measured in accordance with FAA Heat release test FAR 25.853 (a) Appendix F, Part IV (OSU 65 / 65). The invention is useful in the manufacture of articles for aircraft, automotive, railcar, locomotive, bus, marine, aerospace and construction in which the certain advantages may be provided over other materials utilized for such applications.
Owner:AZDEL INC

Lightweight thermoplastic composite including reinforcing skins

A lightweight fiber reinforced thermoplastic composite having an improved combination of surface roughness, flexural and shear characteristics. The composite generally comprises a fiber reinforced thermoplastic core containing reinforcing fibers bonded together with a first thermoplastic resin in which the core has a first surface and a second surface and at least one first skin applied to the first surface. The first skin comprises a plurality of fibers bonded together with a second thermoplastic resin, with the fibers in each first skin aligned in a unidirectional orientation within the first skin. The composite satisfies at least one of the conditions: an average surface roughness of the outer surface of the first skin is equal to or less than about 4.0 μm/10 mm; the flexural modulus and strength are greater than about 10,000 MPa and greater than about 180 MPa, respectively; and the shear modulus and strength are greater than about 3,000 MPa and greater than about 100 MPa, respectively. In another embodiment, a fiber reinforced thermoplastic composite comprises a fiber reinforced thermoplastic core containing reinforcing fibers bonded together with a first thermoplastic resin, the core having a density of about 0.1 gm/cc to about 2.25 gm/cc and a porosity greater than about 0% by volume. The core has a first surface and a second surface and at least one first skin applied to the first surface, each of the first skins comprising fibers bonded together with a second thermoplastic resin. The first skin comprises a thermoplastic melt impregnated continuous fiber prepreg material, or commingled fiber rovings comprising reinforcing fibers and thermoplastic fibers, with the fibers in the first skin aligned in a unidirectional orientation within the first skin.
Owner:AZDEL INC

Completely degraded plant powder modified thermoplastics composite material and preparation method thereof

ActiveCN101760037AHas physical and chemical propertiesEasy to processThermoplastic compositesPolypropylene
The invention discloses a completely degraded plant powder modified thermoplastics composite material and preparation method thereof, which consists of the components with the weight portions as follows: 100 portions of degradable thermoplastics resin, 1-400 portions of plant powder, 0.1-40 portions of dispersing agent, 0.5-60 portions of impact modifier, 0-40 portions of inorganic filler as well as 0.1-10 portions of stabilizing agent. The degraded thermoplastics resin has similar physiochemical performances with universal polyethylene and polypropylene, has excellent processing performances, and can be commixed with plant powder to prepare thermoplastics wood plastic composite materials. The obtained thermoplastics wood plastic composite materials can be completely degraded into carbon dioxide and water in natural environment under the effects of broadly existed microbes like germs, actinomycetes, etc. Compared with wood products, the composite material has the characteristics of good durability and dimensional stability, easy forming, small water absorbability, and corrosion resistance; compared with plastic, the composite material has the characteristics of low cost and high rigidity. The completely degraded plant powder modified thermoplastics composite material can be used for producing the shells of electric apparatuses like TV, sound, copier, printer, etc, and can also be applied on other workpieces used for injection.
Owner:GUANGDONG KINGFA TECH CO LTD +2

Flame-retardant antistatic high-strength thermoplastic composite material and its preparation method

The invention belongs to polymer modification technical field and processing technology field, and discloses a flame-retardant antistatic high-strength thermoplastic composite material and its preparation method. The material comprises (by weight share) 80-100 thermoplastic resin, 50-120 reinforcing fiber, 8-18 flame retardant, 0-5 flame retardant synergistic agent, 0.5-1.8 antistatic agent, 15-30 compatibilizer, 4-10 composite antioxidants, and 0-80 other additives. The invention also discloses the thermoplastic composite material preparation method. The inventive lame-retardant antistatic high-strength thermoplastic composite material has high tension and bending strength, high impact resistance property at low and high temperature, obvious antistatic property, high flame-retardant and fire proof performance. It can reach UL-94 V-O level standard.
Owner:杭州电力设备制造有限公司建德冠源成套电气制造分公司

Thermoplastic pultrusion die system and method

A thermoplastic pultrusion die system for pultruding a thermoplastic composite includes a first pultrusion die member with a curved, concave top surface; a second pultrusion die member with a curved, convex bottom surface; a curved die cavity gap formed between the a curved, concave top surface of the first pultrusion die member and the curved, convex bottom surface of the second pultrusion die member; a die cavity gap adjustment mechanism that imparts movement to at least one of the first pultrusion die member and the second pultrusion die member to vary the die cavity gap from closed to a specified location to open at a specified location; a pultrusion gripper mechanism having one or more grippers in series, and a computer numerical control (CNC) computer system controlling the die cavity gap adjustment mechanism.
Owner:EBERT COMPOSITES

Method for making thermoplastic composite pressure vessels

A process of making a composite vessel with superior mechanical and aesthetic characteristics includes the steps of: A) preforming a composite thermoplastic shell (e.g., by winding a commingled roving of fiberglass and a thermoplastic material onto a thermoplastic liner) having an opening for access to the interior; B) placing the shell (which may optionally be preheated) into a mold (which itself may optionally be preheated); C) introducing an inflatable bag containing a heater into the shell through the opening; D) heating the inflatable bag to a temperature which is sufficient to render the shell fluid while pressurizing the interior of the inflatable bag; E) continuing step D) until the shell forms against the interior walls of the mold; F) allowing the formed composite vessel to cool; G) removing the inflatable bag; and H) removing the formed composite vessel from the mold. Prior to step C), an insert having an opening may be juxtaposed in alignment with the opening in the shell such that, during step C), the inflatable bag is inserted through the opening in the insert. If desired for the intended purpose of the composite vessel, a portion of the exterior surface of the insert may be threaded such that threads are formed in the opening of the shell whereby the insert can be unscrewed leaving a threaded port into the vessel.
Owner:FLECK CONTROLS +1

Continuous Fabrication of Parts Using In-Feed Spools of Fiber Reinforced Thermoplastic

Thermoplastic composite laminate parts with tailored and varying thickness and / or curved sections are manufactured in a continuous process. Automated equipment or hand lay-up is used to collate parts or components into a multi-layer stack. Each stack contains all plies, including ply build-up areas, tacked in the proper location to maintain orientation and location. Some or all of the plies may be continuously fed from spools of single or multiply ply material. Ply consolidation tooling contains all necessary part features and is coordinated to the customized multiple ply stacks to form a single integrated thermoplastic composite laminate potentially having areas of differing thickness from the multiple ply stacks.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products