Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10418 results about "Signal intensity" patented technology

Wireless power transmission system

The wireless power transmission is a system for providing wireless charging and / or primary power to electronic / electrical devices via microwave energy. The microwave energy is focused onto a device to be charged by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and / or for primary power. A communications channel is opened between the wireless power source and the device to be charged. The device to be charged reports to the power source via the channel a received beam signal strength at the rectennas. This information is used by the system to adjust the transmitting phases of the microwave array emitters until a maximum microwave energy is reported by the device to be charged. Backscatter is minimized by physically configuring the microwave array emitters in a substantially non-uniform, non-coplanar manner.
Owner:OSSIA

Multi-Port Entry Adapter, Hub and Method for Interfacing a CATV Network and a MoCA Network

A cable television (CATV) entry adapter interfaces to a CATV network and and serves as a hub in a Multimedia over Coax Alliance (MoCA) network. MoCA signals are bypassed around the CATV communication paths within the entry adapter to maintain adequate signal strength and to allow a passive port of the entry adapter to be used as part of the MoCA network. MoCA signals are suppressed from exiting the CATV entry adapter onto the CATV network.
Owner:PPC BROADBAND INC

Uplink resource allocation to control intercell interference in a wireless communication system

Embodiments of the present invention exploit the reciprocity of radio channels in TDD, and longer-term correlation between average uplink and downlink path losses in FDD wireless communication systems to enable distributed schedulers in an enhanced uplink system to allocate uplink transmission resources while preemptively managing intercell interference levels. Each cell's base station transmits a downlink reference signal at a known transmission power level. A mobile station monitors the received signal strength of the downlink reference signals from multiple base stations. The transmitted and received signal strength levels can be used by the mobile station to estimate the amount of intercell interference that the mobile station's uplink transmissions cause, and the mobile station's uplink transmission parameters are adjusted accordingly. In further embodiments, the received reference signal power levels, or values derived therefrom, are transmitted by the mobile station to its serving base station, where a scheduling algorithm uses the information to adjust one or more transmission parameters relating to a grant of uplink transmission resources to the UE, thereby controlling the intercell interference generated by the mobile station's uplink transmissions.
Owner:SONY CORP

Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods

An automated meter reading network system to collect utility usage data from multiple utility meters having utility meter sensors, program product, and associated methods are provided. The system includes multiple meter data collectors each in communication with one or more utility meters to collect utility usage data and forming a wireless communications network. The system also includes a host computer in communication with the meter data collectors either directly or through multiple field host data collectors which can be connected to the host computer through a wide area network. The system also includes a meter data collector program product at least partially stored in the memory of the host computer to manage the communication network. The meter data collector program product is adapted to analyze signal strength between nodes and to dynamically adjust the power level settings of the individual nodes to enhance network performance.
Owner:ENERGY TECH GROUP

Wireless network inventory system

A wireless location system is provided. The system includes network tags that emit a signal containing tag data, network readers that continuously receive data from the tags, a communication motes to receive the tag data from the readers and to calculate a network signal strength of the signal between the reader and the mote, and a server. The server receives the tag data and network signal strength data from the communication mote, performs calculations on the data, and determines the location of the reader that received the tag data based in part on the received network signal strength data.
Owner:CLARK RYAN +3

Mobile millimeter wave communication link

A point-to-point, wireless, millimeter wave communications link between two stations at least one of which is a mobile station. A millimeter wave transmitter system operating at frequencies higher than 57 GHz with a tracking antenna producing a beam having a half-power beam width of about 2 degrees or less and a millimeter wave receiver also with a tracking antenna having a half-power beam width of about 2 degrees or less. In preferred embodiments each mobile station has a global position system (GPS) and a radio transmitter and both tracking antennas are pointed utilizing GPS information from the mobile station or stations. The GPS information preferably is transmitted via a low frequency, low data rate radio. Each millimeter wave unit is capable of transmitting and / or receiving, through the atmosphere, digital information to / from the other station at rates in excess of 155 million bits per second during normal weather conditions. In preferred embodiments actually built and tested by Applicants digital information has been transmitted at rates of 1.25 gigabits per second. Preferred communication links described here are millimeter wave links operating at frequencies of 71-73 GHz and 74-76 GHz mounted on simple two-axis gimbals. Pointing information of the required accuracy is provided by GPS receivers and standard radio links which send the GPS calculated positions to the millimeter wave systems at the opposite end of the link. In these embodiments there is no need for any complicated closed loop pointing information derived from received signal intensity or phase. On moving platforms locally generated inertial attitude information is combined with the GPS positions to control pointing of the gimbaled transceivers.
Owner:TREX ENTERPRISES CORP

Dual map system for navigation and wireless communication

A system produces of an empirical map of wireless communication coverage through a process of combining information from individual clients to produce a map which is then shared by all of the clients. The wireless coverage map aids in maintaining a reliable communications link. The empirical map is generated by combining information from a group of mobile wireless users. The group may consist of a fleet of trucks, taxicabs, government service vehicles, or the customers of a wireless service provider. The mobile vehicles must be equipped with a GPS device or be located by other means such as triangulation. While vehicles are moving, the quality of wireless communication, e.g., signal strength or communication continuity, is recorded for each vehicle as a function of positions. The data from all of the vehicles is combined to produce the empirical map. The empirical map may be maintained at a central site and subsets of the map replicated for individual vehicles. The map may then be used to direct mobile users to sites of superior communications reliability, warn mobile users when they are out of the service area or are about to leave the service area, or to regulate data communications automatically to stop and restart communications as a mobile vehicle passes through a gap in coverage.
Owner:MEDIATEK INC

Using a derived table of signal strength data to locate and track a user in a wireless network

A method for locating a user in a wireless network is disclosed. A mobile computer seeking to determine its location within a building detects the signal strength of one or more wireless base stations placed at known locations throughout the building. The mobile computer uses this measured signal strength to determine its location via a signal-strength-to-location table look-up. A table of known locations within the building and the base station signal strength at those locations is searched to find the most similar stored signal strength to the signal strength detected. The location corresponding to the most similar stored signal strength is determined to be the current location of the mobile computer. Alternatively, a number of signal strengths from the table can be used and the corresponding locations can be spatially averaged to determine the location of the mobile computer. The table can be derived empirically, by placing a mobile computer at the known locations and detecting the signal strength of the wireless base stations at those locations, or the table can be derived mathematically by taking into account a reference signal strength, the distance between the reference point and the known location, and the number of walls between the reference point and the known location. As an alternative, the base stations can detect the signal strength of the mobile computer. In such a case, the table would relate a known position of the mobile computer to the signal strength of the mobile computer at that location as detected by the one or more base stations.
Owner:MICROSOFT TECH LICENSING LLC

Location of wireless nodes using signal strength weighting metric

Methods, apparatuses, and systems directed to a wireless node location mechanism that uses a signal strength weighting metric to improve the accuracy of estimating the location of a wireless node based on signals detected among a plurality of radio transceivers. In certain implementations, the wireless node location mechanism further incorporates a differential signal strength metric to reduce the errors caused by variations in wireless node transmit power, errors in signal strength detection, and / or direction-dependent path loss. As opposed to using the absolute signal strength or power of an RF signal transmitted by a wireless node, implementations of the present invention compare the differences between signal strength values detected at various pairs of radio receivers to corresponding differences characterized in a model of the RF environment. One implementation of the invention searches for the locations in the model between each pair of radio receivers where their signal strength is different by an observed amount.
Owner:CISCO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products