Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

93 results about "Protein neddylation" patented technology

Covalent attachment of the ubiquitin-like protein NEDD8 (RUB1) to another protein. [PMID:11698580]

Biologically active dimerized and multimerized polypeptide fusions

Methods for producing secreted receptor analogs and biologically active peptide dimers are disclosed. The methods for producing secreted receptor analogs and biologically active peptide dimers utilize a DNA sequence encoding a receptor analog or a peptide requiring dimerization for biological activity joined to a dimerizing protein. The receptor analog includes a ligand-binding domain. Polypeptides comprising essentially the extracellular domain of a human PDGF receptor fused to dimerizing proteins, the portion being capable of binding human PDGF or an isoform thereof, are also disclosed. The polypeptides may be used within methods for determining the presence of and for purifying human PDGF or isoforms thereof.
Owner:ZYMOGENETICS INC

Identification and comparison of protein-protein interactions that occur in populations and identification of inhibitors of these interactors

InactiveUS6057101AEfficient screeningLess experimentally significant and specific indicationMaterial nanotechnologyFungiDiseaseBinding site
Methods are described for detecting protein-protein interactions, among two populations of proteins, each having a complexity of at least 1,000. For example, proteins are fused either to the DNA-binding domain of a transcriptional activator or to the activation domain of a transcriptional activator. Two yeast strains, of the opposite mating type and carrying one type each of the fusion proteins are mated together. Productive interactions between the two halves due to protein-protein interactions lead to the reconstitution of the transcriptional activator, which in turn leads to the activation of a reporter gene containing a binding site for the DNA-binding domain. This analysis can be carried out for two or more populations of proteins. The differences in the genes encoding the proteins involved in the protein-protein interactions are characterized, thus leading to the identification of specific protein-protein interactions, and the genes encoding the interacting proteins, relevant to a particular tissue, stage or disease. Furthermore, inhibitors that interfere with these protein-protein interactions are identified by their ability to inactivate a reporter gene. The screening for such inhibitors can be in a multiplexed format where a set of inhibitors will be screened against a library of interactors. Further, information-processing methods and systems are described. These methods and systems provide for identification of the genes coding for detected interacting proteins, for assembling a unified database of protein-protein interaction data, and for processing this unified database to obtain protein interaction domain and protein pathway information.
Owner:CURAGEN CORP

Therapeutic Anti-her2 antibody fusion polypeptides

Therapeutic protein fusions comprising anti-HER2 antibody and MicB sequences are described along with methods for their production and use
Owner:GENENTECH INC

Complex formation for the stabilisation and purification of proteins of interest

A method is described for altering the properties such as the accumulation, the stability and/or integrity, the subcellular localisation, the post-translational modifications, the ability to get purified, and the phase partitioning behaviour of natural or recombinant target proteins expressed in a host organism. The method involves the co-expression of natural or recombinant proteins along with a specific binding partner that sequesters the target recombinant protein into a complex. The binding partner is supplied as a separate protein allowing formation of intermolecular complexes or is fused to the protein of interest, allowing the formation of intramolecular complexes. The binding partner can also be used to alter the subcellular localisation without modifying the sequence or structure of the target protein itself. This can be achieved by either incorporating appropriate targeting signals into the binding ligand, which are then linked to the target protein through complex formation, or complex formation itself may alter the subcellular localisation. The same strategy can be used to provide an affinity tag to facilitate protein purification. The principle of the invention is demonstrated by the coexpression of an unstable antibody and its cognate antigen.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Nanometer molecular biosensor, preparation method and application thereof

InactiveCN101624568AReduced preparation stepsAssembly SynchronizationBioreactor/fermenter combinationsBiological substance pretreatmentsNanowireFluorescence
The invention discloses a nanometer molecular biosensor and a preparation method thereof. The biosensor is mainly characterized in that a molecular biosensor is self-assembled into a nanometer molecular biosensor by adopting nanowire protein, and compared with an unassembled molecular biosensor, the detection sensitivity is greatly improved. The preparation method adopts the protein fusion technology, and fuses nanowire protein with self-assembled function, special enzyme molecule used as a biology identification element and fluorescence protein used as a transducer element, therefore, functional protein with self-assembled nanowire, identification and transduction output signal functions simultaneously, and after the functional protein is expressed and purified, the functional protein is self-assembled into a nanometer molecular biosensor which can be used for inspecting object molecules in various clinical samples and environment samples. The invention simultaneously discloses an application of the nanometer molecular biosensor prepared by the preparation method in pesticide methyl parathion detection.
Owner:WUHAN INST OF VIROLOGY CHINESE ACADEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products