Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

124 results about "Optical force" patented technology

The optical force is a phenomenon whereby beams of light can attract and repel each other. The force acts along an axis which is perpendicular to the light beams. Because of this, parallel beams can be induced to converge or diverge. The optical force works on a microscopic scale, and cannot currently be detected at larger scales. It was discovered by a team of Yale researchers led by electrical engineer Hong Tang.

Microsurgical robot system

A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool. The robot is MRI compatible and can be configured to operate within a closed magnet bore. The arms are driven about vertical and horizontal axes by piezoelectric motors.
Owner:DEERFIELD IMAGING INC

Optical force sensor

A force sensor particularly suited for use in an electronic stylus that senses the contact force on its nib for recording pen strokes and handwriting recognition. The sensor has a housing for a load bearing member for receiving an input force to be sensed and associated circuitry for converting the input force into an output signal indicative of the input force. The bearing member is movably mounted within the elongate body (up to 100 microns). The input force acting on the load bearing member is caused by contact on the nib. The load bearing member is biased against the direction of the input force. The force sensor also has a light source and photo-detector for sensing levels of illumination from the light source. Associated circuitry converts a range of illumination levels sensed by the photo-detector into a range of output signals, so that the illumination level sensed by the photo-detector varies with movement of the load bearing member within the elongate body such that the output signal from the circuitry is indicative of the input force. Using an optical sensor avoids the need to use a delicate piezo-resistive sensor that requires careful tolerancing during production.
Owner:LIVESCRIBE

Wavelength dependent optical force sensing

Sensors operate by resolving changes in orientation of a wavelength dependent structure with respect to a reference direction determined by an incident light beam, resulting in very high sensitivity and dynamic range. Said sensors are wavelength encoded, can be multiplexed in a single light path such as an optical fiber, yet are decoupled mechanically from the fiber, resulting in high stability.
Owner:KYTON

Apparatus for optically-based sorting within liquid core waveguides

The present invention is related to an apparatus for the sorting of particles in a fluid medium flowing within a liquid-core waveguide, by combining customized light intensity patterns formed inside the waveguide, and diluting the suspension of particles (i.e., cells, blood, nanoparticles, etc.) flowing within the fluid medium of the waveguide. With this customized light intensity pattern, which controls the optical forces introduced by the light confined within the waveguide, and the control of the hydrodynamic forces introduced by the liquid flow (or multiple channel liquid flows), the sorting of particles can be achieved.
Owner:ARRYX INC

Apparatus and method for sizing nanoparticles based on optical forces and interferometric field detection

Light from a laser source is split into a reference arm and a detection arm. The light in the detection arm is focused into a channel containing particles to be detected and is backscattered by the particles. The light in the reference arm is attenuated. The attenuated and backscattered light are caused to interfere and detected by a split detector so that the effects of background light can be subtracted out, while the backscattered light is detected to detect the particles.
Owner:UNIVERSITY OF ROCHESTER

Method and apparatus for characterizing a sample with two or more optical traps

The present invention relates to a method for investigating a sample using scanning probe photon microscopy or optical force microscopy, and to an apparatus which is designed accordingly. The method or the apparatus provides for two optical traps which can be moved in a local region of the sample, wherein in at least one of the two traps a probe is held. The sample is scanned using the two traps and the measured data from the two traps are captured separately and evaluated by correlation. In particular interference signals resulting from an interaction between sample and light trap can be eliminated by the method.
Owner:BRUKER NANO INC +1

Method and Apparatus for Characterizing a Sample with Two or More Optical Traps

The present invention relates to a method for investigating a sample using scanning probe photon microscopy or optical force microscopy, and to an apparatus which is designed accordingly. The method or the apparatus provides for two optical traps which can be moved in a local region of the sample, wherein in at least one of the two traps a probe is held. The sample is scanned using the two traps and the measured data from the two traps are captured separately and evaluated by correlation. In particular interference signals resulting from an interaction between sample and light trap can be eliminated by the method.
Owner:JPK INSTR

Apparatus and method for detecting deformability of cells using spatially modulated optical force microscopy

InactiveUS20070086919A1Quick and sterile measurementTechnique is very sensitiveMaterial analysis by optical meansNanoopticsSpatial light modulatorTrapping
The present invention utilizes spatially modulated optical force microscopy (SMOFM) with single beam optical force probing capability or with a holographic optical trapping system capable of multi-beam optical force probing coupled to a microscope objective, to generate a probe beam(s) as a force probe to perturb the object that is adhered or resting on a surface, so that deformations of the object may subsequently be quantified. This quantification is performed by imaging a sequence of four phase shifted replicas of the image using a computer-controlled spatial light modulator, and calculating the pixel by pixel optical path-length using existing algorithms. The change in optical path lengths, and consequently the viscoelastic or elastic response elicited, is an indication of damage or disease when the objects are cells. In another embodiment, the optical deformability of the cells may be measured and correlated with measurements of cytoskeletal / structural protein expression.
Owner:ARRYX INC

Apparatus and method for detecting deformability of cells using spatially modulated optical force microscopy

InactiveUS7460240B2Quick and sterile measurementTechnique is very sensitiveMaterial analysis by optical meansNanoopticsDiseaseSpatial light modulator
The present invention utilizes spatially modulated optical force microscopy (SMOFM) with single beam optical force probing capability or with a holographic optical trapping system capable of multi-beam optical force probing coupled to a microscope objective, to generate a probe beam(s) as a force probe to perturb the object that is adhered or resting on a surface, so that deformations of the object may subsequently be quantified. This quantification is performed by imaging a sequence of four phase shifted replicas of the image using a computer-controlled spatial light modulator, and calculating the pixel by pixel optical path-length using existing algorithms. The change in optical path lengths, and consequently the viscoelastic or elastic response elicited, is an indication of damage or disease when the objects are cells. In another embodiment, the optical deformability of the cells may be measured and correlated with measurements of cytoskeletal / structural protein expression.
Owner:ARRYX INC

Method for sorting and recovering fine particle and apparatus for recovery

The present invention provides a fine-particle sorting technique that uses optical pressure (optical force) and that can be applied in place of heretofore known cell sorting techniques; and a fine-particle recovering technique therefor. The fine-particle recovering method of the present invention comprises directing a laser beam toward a flow path of fine particles in such a manner that the laser beam crosses the flow direction of the fine particles to thereby deflect the direction of movement of the fine particles to be recovered, in the direction of convergence of the laser beam. The sorting method of the present invention comprises performing flow cytometric sorting of fine particles according to the above recovering method of the present invention.
Owner:TECHNO NETWORK SHIKOKU

Metamaterial-based optical tweezers

The invention provides metamaterial-based optical tweezers. By preparing a hole array with a periodic structure on one or more layers of sandwich structure including a metal layer, an insulating layer and another metal layer, the optical tweezers can have magnetic dipoles, and under the irradiation of a light source, a negative optical force along the illumination direction is generated, so micro-particles can be captured and selected accurately. With the magnetic dipoles, the optical tweezers can capture the micro-particles under the action of a low-power light source, and influence and interference of the optical tweezers on the activity of a biological sample caused by over-high power of the light source are reduced. The optical tweezers can have the characteristics of small volume, large capturing force, high stability and the like.
Owner:DALIAN UNIV OF TECH

Apparatus and method for transport of microscopic object(s)

A system and the method for transport of microscopic objects / particles involving the use of laser source operatively connected to a microscope objective which is adapted to generate optical focal spots on said particle(s) with asymmetric intensity profile in transverse plane followed by varying the said asymmetry of the gradient optical forces on the micron sized object / particles to thereby transport the microscopic object(s). The system and the method can be used to transport microscopic objects including i) transportation of cells and intra-cellular organelles, ii) acceleration of microscopic objects along any direction in a plane transverse to the direction of propagation of laser beam, iii) optical channeling of objects through a micro-capillary from one micro-well to another and transfer to another channel after desired processing, iv) sorting of microscopic objects, v) optical control of micro-machines, micro-fluidic devices etc.
Owner:SEC

Sorting Colloidal Particles Into Multiple Channels with Optical Forces: Prismatic Optical Fractionation

A method and system for controlled fractionation of particles. A sample having a plurality of particles of different size distributions. A uniform array for the preparing of optical traps having a selected array lattice constant. The plurality of particles for inputting the plurality of particles to the uniform array of optical traps at a driving direction angle and the plurality of particles separating along different directions based on variable particle attributes.
Owner:NEW YORK UNIV

Apparatus and method for transport of microscopic object(s)

A system and the method for transport of microscopic objects / particles involving the use of laser source operatively connected to a microscope objective which is adapted to generate optical focal spots on said particle(s) with asymmetric intensity profile in transverse plane followed by varying the said asymmetry of the gradient optical forces on the micron sized object / particles to thereby transport the microscopic object(s). The system and the method can be used to transport microscopic objects including i) transportation of cells and intra-cellular organelles, ii) acceleration of microscopic objects along any direction in a plane transverse to the direction of propagation of laser beam, iii) optical channeling of objects through a micro-capillary from one micro-well to another and transfer to another channel after desired processing, iv) sorting of microscopic objects, v) optical control of micro-machines, micro-fluidic devices etc. Importantly the apparatus and the method of the invention would have use in various biotechnological and micro electromechanical systems. Also the system and method for optical transportation of microscopic objects, would be capable of transporting objects of varying dimensions ranging from sub-micron to few tens of microns.
Owner:SEC

Method and Apparatus for Measuring the Optical Forces Acting on a Particle

An apparatus and method for measuring optical forces acting on a trapped particle. In one implementation the apparatus and method are adaptable for use in the optical train of an optical microscope that is configured to trap, with a single light beam, a particle suspended in a suspension medium between an entry cover and an exit cover of a chamber positioned on or within the microscope. The apparatus and method involves the use of a single collection lens system having a numerical aperture designed to be greater than or equal to an index of refraction index of the suspension medium intended to suspend the particle in the chamber which is placeable at or near the exit cover of the chamber of the microscope. A light sensing device is positioned at or near the back focal plane of the collection lens, or at an optical equivalent thereof, which is capable of directly or indirectly producing optical force measurements acting on the particle derived by the x and y coordinates of the centroid of the light distribution imaged onto the light sensing device by the collection lens.
Owner:MONTES USATEGUI MARIO +1

Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation

A method and system for controlled fractionation of particles. A sample having a plurality of particles of different size distributions. A uniform array for the preparing of optical traps having a selected array lattice constant. The plurality of particles for inputting the plurality of particles to the uniform array of optical traps at a driving direction angle Θ and the plurality of particles separating along different directions Θv based on variable particle attributes.
Owner:NEW YORK UNIV

Catheter arrangement

InactiveUS20130253490A1High pulse densityConstructional requirement is minimizedDiagnosticsThermometers using physical/chemical changesMedicineCarrier signal
At least one embodiment of the invention relates to a catheter arrangement comprising a catheter with a proximal section and a distal section, to measure a force acting on the distal section and simultaneously receive a temperature signal prevailing in the distal section. According to at least one embodiment of the invention, the catheter arrangement comprises an evaluation unit connected to a single combined optical force and temperature sensor, and further comprises a readout signal generator to generate and feed a readout signal modulated with a carrier frequency into the force sensor and temperature sensor. According to at least one embodiment of the invention, the catheter arrangement comprises a first readout device to read out a first modulated measuring signal portion, a second readout means to read out a second unmodulated measuring signal portion, and a processing unit to combine the first and second measuring signal portions.
Owner:VASCOMED GMBH

Surface Mapping by Optical Manipulation of Particles in Relation to a Functionalized Surface

Methods and apparatus for analyzing surface properties of particles are provided. A method for analyzing the surface properties of the particle includes a associating a first particle with a first capture zone having a specific binding affinity for a first chemical species, applying an optical force to the first particle, sensing a response of the first particle to the optical force, and using the sensed response to determine the presence, absence or quantity of the first chemical species on the first particle surface. This process may be repeated in parallel to test multiple particles. In addition to directly testing the surface properties of the particles, the method can be used in direct, indirect and competitive assays to determine the presence, absence or quantity of free or immobilized analytes. A fluidic cartridge with capture zones having avidities that are tuned for the use of optical forces is provided. A software routine for performing the method is also provided.
Owner:ARRYX INC

System for applying optical forces from phase gradients

A system and method for creating extended optical traps for applying optical forces to a material to be manipulated for a commercial application. The system and method include applying a hologram of appropriate characteristics to a beam of light wherein the hologram characteristics include a transverse optical component to apply optical forces transverse to an optical axis of the system. A shape phase component achieves this transverse optical component and also intensity gradient components can be applied via the hologram to provide programmable extended optical traps for a selectable commercial application.
Owner:NEW YORK UNIV

Adjustable optical resonance device and modulation method of adjustable optical resonance device

The invention discloses an adjustable optical resonance device and a modulation method of the adjustable optical resonance device. The adjustable optical resonance device comprises a substrate, a first waveguide, a second waveguide, an optical resonator and a third waveguide, wherein the first waveguide, the second waveguide, the optical resonator and the third waveguide are attached to the substrate. The first waveguide and the second waveguide are arranged on one side of the optical resonator in sequence, and the third waveguide is arranged on the other side of the optical resonator. The contact surface between the first waveguide and the substrate and the contact surface between the second waveguide and the substrate are hollowed out; the sectional area of the second waveguide is larger than that of the first waveguide. Control light with power larger than the light power threshold value is input, as a result, the first waveguide deforms, the coupling coefficient of the optical resonator and the first waveguide is changed, and the extinction ratio and Q value of the resonance device are adjusted. According to the adjustable optical resonance device and the modulation method of the adjustable optical resonance device, the optical force effect of interaction between the waveguides is used for changing the coupling coefficient of the optical resonator and the waveguides to adjust the extinction ratio and Q value of the optical resonance device; the relation that the optical force effect increases along with increase of control light power is utilized, the magnitude of the power of the control light is changed to directly change deformation of the hollowed-out thin waveguides, and the adjustable optical resonance device is easy to realize and flexible in operation.
Owner:HUAZHONG UNIV OF SCI & TECH

Nanomechanical photonic devices

The present invention relates to devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters. The waveguide can also comprise a gap such that two cantilever bridges are formed.
Owner:YALE UNIV

Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles

Apparatus and methods are provided for interacting light with particles, including but not limited to biological matter such as cells, in unique and highly useful ways. Optophoresis consists of subjecting particles to various optical forces, especially optical gradient forces, and more particularly moving optical gradient forces, so as to obtain useful results. In biology, this technology represents a practical approach to probing the inner workings of a living cell, preferably without any dyes, labels or other markers. In one aspect, a particle may be characterized by determining its optophoretic constant or signature. For example, a diseased cell has a different optophoretic constant from a healthy cell, thereby providing information, or the basis for sorting. In the event of physical sorting, various forces may be used for separation, including fluidic forces, such as through the use of laminar flow, or optical forces, or mechanical forces, such as through adhesion. Various techniques for measuring the dielectric constant of particles are provided.
Owner:CELULA

Cavity opto-mechanical sensor array

A mass sensor system including multiple Fabry-Perot microcavities connected in parallel by multiple waveguides. Each of the mass sensors includes a microbridge having a fundamental resonance frequency, and a movable reflective mirror etched into the microbridge; a fixed reflective mirror etched in a substrate, the fixed reflective mirror being fixed to the substrate in a region spaced apart from the movable reflective mirror; and an optical waveguide etched in the substrate that connects the movable mirror and the fixed mirror forming the Fabry-Perot microcavity interferometer. The system includes a tunable continuous-wave laser operative to optically interrogate the Fabry-Perot microcavity of each of the plurality of mass sensors, and a receiver operative to receive sensor signals from each of the plurality of mass sensors, the sensor signals comprising reflective signals and transmitted signals. A continuous-wave laser may generate optical forces that modify the motion, dynamics, or mechanical Q-factor of the microbridge.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

System for applying optical forces from phase gradients

A system and method for creating extended optical traps for applying optical forces to a material to be manipulated for a commercial application. The system and method include applying a hologram of appropriate characteristics to a beam of light wherein the hologram characteristics include a transverse optical component to apply optical forces transverse to an optical axis of the system. A shape phase component achieves this transverse optical component and also intensity gradient components can be applied via the hologram to provide programmable extended optical traps for a selectable commercial application.
Owner:NEW YORK UNIV

Optical force sensing element and microsurgical instrument

An optical force sensing element for microsurgical instruments and methods measures force F in three orthogonal directions and includes a monolithic cylinder structure, a cylindrical surface and a top surface that absorbs and transmits the force F. Three punch-like notches, all being parallel to the y-direction, are spaced apart along the z-axis and form two blades between the first and second notch and between the second and the third notch. Three channels parallel to the z-axis extend from the bottom surface to the top surface and cross the first notch while bypassing the other two notches. Three optical fibres, each fixed in one of the three channels, all entering the structure from the bottom surface, cross the first notch and end at or near the top surface while being interrupted in the first notch and forming two surfaces of each fibre that define a Fabry-Perot interferometric cavity.
Owner:SENSOPTIC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products