Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

730 results about "Optical communication networks" patented technology

An optical network is a type of data communication network built with optical fiber technology. It utilizes optical fiber cables as the primary communication medium for converting data and passing data as light pulses between sender and receiver nodes. An optical network is also known as an optical fiber...

Method and apparatus for filtering an optical beam

The invention pertains to wavelength-agile optical filters suitable for wavelength-division-multiplexed (WDM) optical communications networks. More particularly, the invention pertains to optical filters with a wavelength reference that can be remotely switched to arbitrarily selectable channels on a standard grid, and to re-configurable optical communications networks employing same. The present invention provides a communication apparatus with a tunable filter which may be used in a wide range of applications including tuning an external cavity laser (ECL), selecting a wavelength for an add / drop multiplexer and providing channel selection and feedback for a wavelength locker. The filter may be utilized as a discrete component or in combination with circulators, wavelength lockers and gain medium. The filter may be implemented in whole or in part as part of a gain medium. The tunable filter exhibits a compact form factor and precise tuning to any selected wavelength of a predetermined set of wavelengths comprising a wavelength grid. The tunable filter may thus be utilized in telecom applications to generate the center wavelengths for any channel on the ITU or other optical grid.
Owner:INTEL CORP

Optical communication network system

A fiber optic communication system includes a device of switching and setting wavelength of optical signals used in communication by network-node equipments, which sets the mapping of the wavelength of the optical signal used in communication by the network node equipments, and the input / output ports of an array waveguide grating (AWG), so as to construct a predetermined logical network topology by a plurality of network node equipments which are connected via optical fibers to the array waveguide grating that outputs optical signals inputted to optical input ports, to predetermined optical output ports in accordance with the wavelength thereof. As well as enabling a simple construction, it is easy to realize flexible network design, construction, and operation, and different network groups can also be easily connected to each other. Moreover, a fiber optic communication system having robust security and which can be stably operated even at the time of failure is realized at low cost.
Owner:NIPPON TELEGRAPH & TELEPHONE CORP

Non-linear equalizer in a coherent optical receiver

A method of recovering a most likely value of each symbol transmitted through an optical communications network using a high speed optical signal. A stream of multi-bit digital samples of the optical signal is processed to generate a respective multi-bit estimate X′(n) of each transmitted symbol. A first function is applied to each symbol estimate X′(n) to generate a corresponding soft decision value {tilde over (X)}(n). Each soft decision value {tilde over (X)}(n) is processed to generate a corresponding hard decision value. {circumflex over (X)}(n) having an ideal amplitude and phase. A plurality of successive soft decision values and hard decision values are processed to determine a second function, which is applied to each soft decision value {tilde over (X)}(n) to generate a most likely symbol value {circumflex over ({circumflex over (X)}(n).
Owner:CIENA CORP

Signal equalizer in a coherent optical receiver

A signal equalizer for compensating impairments of an optical signal received through a link of a high speed optical communications network. At least one set of compensation vectors are computed for compensating at least two distinct types of impairments. A frequency domain processor is coupled to receive respective raw multi-bit in-phase (I) and quadrature (Q) sample streams of each received polarization of the optical signal. The frequency domain processor operates to digitally process the multi-bit sample streams, using the compensation vectors, to generate multi-bit estimates of symbols modulated onto each transmitted polarization of the optical signal. The frequency domain processor exhibits respective different responses to each one of the at least two distinct types of impairments.
Owner:CIENA

Multi-wavelength locking method and apparatus for wavelength division multiplexing (WDM) optical communication system

Disclosed is a multi-wavelength locking method for a wavelength division multiplexing (WDM) optical communication network, and in particular, a multi-wavelength locking method and apparatus for a WDM optical communication system that can lock wavelengths of optical signals by producing pilot tones by applying a sine-wave current to a plurality of transmission lasers having different wavelengths, passing the optical signal through a Fabry-Perot etalon filter, and then Fourier-transforming the filtered optical signal. The multi-wavelength locking method includes frequency-modulating an optical signal by applying a small and specified sine-wave current to a bias current for driving WDM lasers, detecting pilot tones produced after filtering the optical signal through a filtering section and converting the detected signal into a digital signal by performing a sampling of the detected signal, detecting a magnitude and phase of the pilot tones by performing a fast Fourier transform, providing Fourier-transformed data as a first derivative signal of the filtering section, and locking an operation wavelength of WDM channels by controlling the temperature or current if resonance frequencies of the filtering section coincide with respective standard frequency.
Owner:KOREA ADVANCED INST OF SCI & TECH

System, device, and method for managing service level agreements in an optical communication system

A system, device, and method for managing service level agreements in an optical communication system uses an optical service agent to manage a service level agreement (SLA) for a user. The optical service agent can perform both real-time and off-line analysis for the user, and can interact with various network elements (including the core optical communication network) to handle billing, penalty, and other issues associated with a SLA breach. Among other things, the optical service agent may monitor and analyze a connection in real-time for determining SLA compliance, gather and maintain statistical information relating to a connection, analyze the statistical information off-line for determining SLA compliance, patterns, and trends, interact with a service provider to enforce penalty provisions in the SLA, interact with a service provider to negotiate a credit for services not provided by the service provider in accordance with the SLA, interact with a service provider to negotiate “replacement” services for a breach of the SLA, interact with various network elements to rectify a breach of the SLA, interact with the service provider to dynamically modify the SLA based upon changing user requirements, and interface with a billing / accounting system to provide SLA-related information.
Owner:RPX CLEARINGHOUSE

Method and system for detecting network elements in an optical communications network

An exemplary embodiment of the invention is a method of detecting network elements in an optical communications network. The method includes an initiating network element generating a neighbor discovery message including a requested hierarchy level at which neighbor discovery is requested and transmitting the neighbor discovery message downstream along the optical communications network. A downstream network element receives the neighbor discovery message, determines if the downstream network element operates at the requested hierarchy level. The downstream network element generates a responding neighbor discovery message if the downstream network element operates at the requested hierarchy level and transmits the responding neighbor discovery message to the initiating network element. Alternate embodiments include a system and storage medium for implementing the method.
Owner:CIENA

Erbium and ytterbium co-doped phosphate glass optical fiber amplifiers using short active fiber length

InactiveUS6611372B1High gain per unit lengthHigh gain amplificationLaser arrangementsActive medium materialErbium dopingPhosphate glass
An optical fiber amplifier utilizing a phosphate glass optical fiber highly doped with rare-earth ions such as erbium to exhibit high gain per unit length, enabling the use of short fiber strands to achieve the needed gain in practical fiber optical communication networks. The high-gain phosphate optical glass fiber amplifiers are integrated onto substrates to form an integrated optics amplifier module. An optical pump such as a semiconductor laser of suitable wavelength is used to promote gain inversion of erbium ions and ultimately provide power amplification of a given input signal. Gain inversion is enhanced in the erbium doped phosphate glass fiber by co-doping with ytterbium. A phosphate fiber amplifier or an integrated optics amplifier module utilizing this power amplification can be combined with other components such as splitters, combiners, modulators, or arrayed waveguide gratings to form lossless or amplified components that do not suffer from insertion loss when added to an optical network. The fiber amplifier can be a single fiber or an array of fibers. Further, the phosphate glass fibers can be designed with a temperature coefficient of refractive index close to zero enabling proper mode performance as ambient temperatures or induced heating changes the temperature of the phosphate glass fiber. Large core 50-100 .mu.m fibers can be used for fiber amplifiers. The phosphate glass composition includes erbium concentrations of at least 1.5 weight percentage, preferably further including ytterbium at 1.5 weight percentage, or greater.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Optical communication network and method of remotely managing multiplexers

To provide a graphic user interface, supported by HTML or Java script, to a personal computer (102) for the control of SONET / SDH network elements (106), an RS-232 port of a PC is used to establish a PPP session to a remote access server, RAS (122). The network element (106) is therefore configured to imitate a modem, and to route PPP packets into its related management system across an optical ring (12). The management system may include an intermediate network manager (120) and a DHCP server (124). Once legitimacy of the PC is established through the IP session, the PC is provided with an IP address to invoke the PC's IP stack. Subsequently, IP is communicated across the PPP session, with the RAS (120) configured to terminate the PPP session and forward IP packets into an IP network (128). IP packets (131), received at a web server (140), are converted into command line interface (CLI) messages 135 and are sent directly to the network manager (120) within an IP packet. The network manager (120) terminated the IP packet and re-packages the CLI messages into an optical carrier format (140) for relay to an addressed network element (106). The addressed network element (106), which is responsive to the CLI messages from a management perspective, then alters its set-up or functionality accordingly. Complex text-based CLI instructions are thus avoided by a field-based engineer through the use of a GUI supported by a PC having web-browser capabilities, with an typical architecture shown in FIG. 2.
Owner:CIENA

Protection for bi-directional optical wavelength division multiplexed communications networks

A bi-directional wavelength division multiplexed (WDM) optical communications network that includes components for automatically detecting a fault along a primary optical waveguide in a link forming part of a bi-directional WDM communication network and switching the transmission path of the optical signals propagated along that link from that waveguide to a second standby waveguide whenever a fault is detected in the first waveguide using 1×2 optical switches, optical filters, photodetectors and electronics in a configuration designed to avoid silent event failures. Replacing the 1×2 optical switches with 2×2 optical switches in conjunction with other equipment can allow either the constant monitoring of the standby waveguide, provide back up for optical transmitters, receivers and couplers on the path containing the primary waveguide and / or allow carriage of low priority traffic on the standby waveguide as long as it is in standby mode. No handshaking mechanism is required between the opposite ends of the waveguides for the switchover protection.
Owner:GO4FIBER

Optical communication network path restoration

A method and system of determining a new path through an optical network from a source node to a destination node when a link in an original path fails are disclosed. When a fault on a link is detected, adjoint weights are assigned to each operational link for each node on the original path. A connection cost is determined for each node based on the adjoint weights of the links connected to the node. A new path through the optical network is determined based at least in part on the adjoint weights and the connection costs.
Owner:CIENA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products