Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

155 results about "Inherited disease" patented technology

N a disease or disorder that is inherited genetically. an inherited disease controlled by a single pair of genes. an inherited disease controlled by several genes at once. an inherited skeletal disorder beginning before birth; cartilage is converted to bone resulting in dwarfism.

Induction of exon skipping in eukaryotic cells

The present invention provides a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, by inducing so-called exon skipping in the cell. Exon-skipping results in mature MRNA that does not contain the skipped exon, which leads to an altered product of the exon codes for amino acids. Exon skipping is performed by providing a cell with an agent capable of specifically inhibiting an exon inclusion signal, for instance, an exon recognition sequence, of the exon. The exon inclusion signal can be interfered with by a nucleic acid comprising complementarity to a part of the exon. The nucleic acid, which is also herewith provided, can be used for the preparation of a medicament, for instance, for the treatment of an inherited disease.
Owner:LEIDEN ACADEMISCH ZIEKENHUIS

System for genome analysis and genetic disease diagnosis

The method for genome analysis translates the clinical findings in the patient into a comprehensive test order for genes that can be causative of the patient's illness, delimits analysis of variants identified in the patient's genome to those that are “on target” for the patient's illness, and provides clinical annotation of the likely causative variants for inclusion in a variant warehouse that is updated as a result of each sample that is analyzed and that, in turn, provides a source of additional annotation for variants. The method uses a genome sequence having the steps of entering at least one clinical feature of a patient by an end-user, assigning a weighted value to the term based on the probability of the presence of the term, mapping the term to at least one disease by accessing a knowledge base containing a plurality of data sets, wherein the data sets are made up of associations between (i) clinical features and diseases, (ii) diseases and genes, (iii) genes and genetic variants, and (iv) diseases and gene variants, assigning a truth value to each of the mapped terms based on the associated data sets and the weighted value, to provide a list of results of possible diagnoses prioritized based on the truth values, with continuous adjustment of the weightings of associations in the knowledge base based on updating of each discovered diagnosis and attendant clinical features, genes and gene variants. This method can be performed in fifty hours or twenty-four hours or less.
Owner:CHILDRENS MERCY HOSPITAL

Isolated homozygous stem cells, differentiated cells derived therefrom, and materials and methods for making and using same

The present invention discloses and describes pluripotent homozygous stem (HS) cells, and methods and materials for making same. The present invention also provides methods for differentiation of HS cells into progenitor (multipotent) cells or other desired cells, groups of cells or tissues. Further, the applications of the HS cells disclosed herein, include (but are not limited to) the diagnosis and treatment of various diseases (for example, genetic diseases, neurodegenerative diseases, endocrine-related disorders and cancer), traumatic injuries, cosmetic or therapeutic transplantation, gene therapy and cell replacement therapy.
Owner:STEMRON

Suprametallogels and uses thereof

ActiveUS9447129B2Novel material propertiesHigh modulusPalladium organic compoundsNickel organic compoundsBovine respiratory diseaseGenitourinary diseases
The disclosure provides nanostructures (e.g., nanospheres and nano-paddlewheels) formed through transition metal-ligand (e.g., Pd(II)-, Ni(II)-, or Fe(II)-ligand of Formula (A)) coordination and junction self-assembly. The disclosure also provides supramolecular complexes that include the nanostructures connected by divalent linkers Y. The provided supramolecular complexes are able to form gels (e.g., hydrogels). The gels are suprametallogels and exhibited excellent mechanical properties without sacrificing self-healing and showed high robustness and storage modulus. The present disclosure further provides compositions (e.g., gels) that include the nanostructures or supramolecular complexes and optionally an agent (e.g., small molecule), where the nanostructures and the nanostructure moieties of the supramolecular complexes may encapsulate and slowly release the agent. The nanostructures, supramolecular complex, and compositions may be useful in delivering an agent to a subject, tissue, or cell, as super-absorbent materials, and in treating a disease (e.g., a genetic diseases, proliferative disease (e.g., cancer or benign neoplasm), hematological disease, neurological disease, gastrointestinal disease (e.g., liver disease), spleen disease, respiratory disease (e.g., lung disease), painful condition, genitourinary disease, musculoskeletal condition, infectious disease, inflammatory disease, autoimmune disease, psychiatric disorder, or metabolic disorder).
Owner:MASSACHUSETTS INST OF TECH

Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition fo multiple cancer mutations in vivo

The invention involves inducing 3-50 or more mutations (e.g., any whole number between 3 and 50 of mutations, with it noted that in some embodiments there can be up to 16 different RNA(s), e.g., sgRNAs each having its own a promoter, in a vector, such as AAV, and that when each sgRNA does not have its own promoter, there can be twice to thrice that amount of different RNA(s), e.g., sgRNAs, e.g., 32 or even 48 different guides delivered by one vector) in transgenic Cas9 eukaryotes to model genetic disease, e.g. cancer. The invention comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g., cancer.
Owner:MASSACHUSETTS INST OF TECH +1

Familial specific genetic disease correlated allele haplotype variation tag confirmation method

The present invention provides a method for identifying the haplotype variation tags of the family-specific hereditary disease related alleles, comprising extracting the genomic DNA of at least five members selected from a family with Mendelian hereditary disease, obtaining the information of the disease-related target genes, amplifying and sequencing the DNA fragments of the target gene regions in each genomic DNA, selecting all the variation loci existing in the target gene regions in each genomic DNA respectively, obtaining the genotype of each variation locus in each genomic DNA, and genetically analyzing the typing results of the variation loci in each genomic DNA together with the disease traits, thereby identifying the haplotype variation tags of the disease-related alleles.
Owner:苏州鑫卓信生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products