Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

139 results about "Amidase" patented technology

In enzymology, an amidase (EC 3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide...

Antifouling composition comprising an enzyme in the absence of its substrate

The present invention in one aspect relates to a coating composition comprising at least one enzyme capable of acting on a compound, wherein said action results in the formation of an antifouling species comprising an antifouling activity, and wherein said compound does not form part of said coating composition. The coating composition preferably comprises at least one oxidase capable of acting on a compound, such as a substrate for said oxidase, wherein said action results in the formation of an antifouling species including an antimicrobial species comprising an antimicrobial activity. More preferred, the oxidase comprises an activity which results in the formation of a peroxide. The oxidase can be present in said coating composition in combination with one or more additional enzymes including, but not limited to, an esterase, including a lipase, an amidase, including a protease, and a polysaccharide degrading enzyme, wherein said one or more additional enzyme(s), alone or in any combination, can be included in the presence or absence of one or more substrates for one or more of said enzymes.
Owner:BIOLOCUS

Engineered nitrile hydratase-producing bacterium with amidase gene koucked-out, the construction and the use thereof

ActiveUS20110104690A1Inhibit expressionNot affect performance of strainBacteriaUnicellular algaeBacteroidesLarge fragment
An engineered nitrile hydratase-producing bacterium and its construction method as well as its applications, wherein the engineered nitrile hydratase-producing bacterium is a mutant strain of an original nitrile hydratase-producing bacterium strain obtained by knocking-out or inhibiting the amidase gene in the original strain. The construction method of the engineered bacterium is to block the expression of the amidase gene by inserting the large fragment of a recombinant suicide plasmid carrying an amidase gene fragment into a wild-type strain through the homologous recombination between the recombinant suicide plasmid and the amidase gene of the wild-type strain. Compared to the corresponding wild-type bacterium strain, both the cell growth and the nitrile hydratase expression of the engineered nitrile hydratase-producing bacterium according to the invention are increased. In the process of catalyzing the hydration of acrylonitrile to produce acrylamide, the yield of the product, acrylamide, is significantly increased, while the yield of the by-product acrylic acid is significantly decreased. The engineered nitrile hydratase-producing bacterium of the present invention has wide application prospect in the production of acrylamide by microbiological process.
Owner:TSINGHUA UNIV

Nucleic acid fragments encoding nitrile hydratase and amidase enzymes from comamonas testosteroni 5-MGAM-4D and recombinant organisms expressing those enzymes useful for the production of amides and acids

The invention relates to the isolation, sequencing, and recombinant expression of genes encoding either a nitrile hydratase (NHase) or amidase (Am) from Comamonas testosteroni 5-MGAM-4D, where the NHase is useful for catalyzing the hydration of nitriles to the corresponding amides, and the amidase is useful for hydrolysis of amides to the corresponding carboxylic acids. Also provided are transformed host cells containing polynucleotides for expressing the nitrile hydratase or amidase enzymes from Comamonas testosteroni 5-MGAM-4D.
Owner:EI DU PONT DE NEMOURS & CO

Primers for use in detecting beta-lactamases

Oliognucleotide primers are provided that are specific for nucleic acid characteristic of certain beta-lactamases. The primers can be employed in methods to identify nucleic acid characteristic of family-specific beta-lactamase enzymes in samples, and particularly, in clinical isolates of Gram-negative bacteria.
Owner:CREIGHTON UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products