A post-
occlusion chamber collapse canceling
system for a surgical apparatus that detects the breaking of occlusions by tissue fragments in the distal end of the aspiration path and produces a response comprising a transitory blockage of the distal end the aspiration path to terminate the chamber collapse and a simultaneous transitory venting of the aspiration line to relieve the vacuum, in a way that post-
occlusion chamber collapses are cancelled.Disclosed herein, in a preferred embodiment, is a surgical
system and related method for preventing collapse of a body chamber being operated upon, due to a vacuum surge following a clearing of an
occlusion in an aspiration path of the surgical
system, comprising: an occlusion-break sensor for sensing the clearing of the occlusion; a normally-open occlusion valve, temporarily closing in response to the occlusion-break sensor sensing the clearing of the occlusion, thereby occluding fluid flow through the aspiration path and controllably stabilizing the occlusion break, thereby preventing the vacuum surge and consequent body chamber collapse; and a normally-closed venting valve temporarily opening in response to the occlusion-break sensor sensing the clearing of the occlusion, to reduce the vacuum thereby preventing the vacuum surge and consequent body chamber collapse. In an alternative embodiment, the normally-open occlusion valve may be omitted.In yet another alternative embodiment, disclosed is a similar surgical system and related, comprising a normally-closed occlusion valve, temporarily opening for a defined interval before returning to a closed stated, and repeating the temporarily opening and closing at a controlled repetition rate, in response to control by an operator of the system, wherein, by opening the aspiration path in response to the control by the operator, flow through the aspiration path is controlled by the operator thereby preventing the vacuum surge and consequent body chamber collapse.