Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

113results about How to "Recover energy" patented technology

Ejector cycle system with critical refrigerant pressure

In an ejector cycle system using carbon dioxide as refrigerant, an ejector decompresses and expands refrigerant from a radiator to suck gas refrigerant evaporated in an evaporator, and converts an expansion energy to a pressure energy to increase a refrigerant pressure to be sucked into a compressor. Because refrigerant is decompressed and expanded in a super-critical area, a pressure difference during the decompression operation becomes larger, and a specific enthalpy difference becomes larger. Accordingly, energy converting efficiency in the ejector becomes higher, and efficiency of the ejector cycle system is improved.
Owner:DENSO CORP

Laminar air turbine

InactiveUS7214029B2Low costMaximize rotational forcePump componentsWind motor controlWind drivenTurbine wheel
The windmill assembly is a low drag, streamlined body of revolution that captures the kinetic energy content of the accelerated laminar air surrounding the body. The assembly includes a power-generating, wind-driven turbine that is compact, lightweight and capable of producing a substantially greater output than a conventional windmill with a comparable size rotor. The turbine includes a protruding aerodynamic nose and outer cowling that provide a streamlined, wind-collecting inlet section that constricts the incoming air stream and increases its velocity through the turbine blades. The turbine further includes an exit section designed to exhaust the air stream with a minimum of turbulence. One or more generators are coupled to a turbine wheel, and are electrically switched on and off to maximize the energy capture over the full range of ambient winds. The wind turbine assembly may be configured around a blimp-type body having counter-rotating turbine assemblies.
Owner:RICHTER DONALD L

Compact scanned electron-beam x-ray source

A compact, reliable scanning electron-beam x-ray source achieves reduced complexity and cost. In particular, the x-ray source includes an electron beam that is propagated parallel to an x-ray target and is swept across the target in response to a moving magnetic cross field. Rather than scanning the beam by deflecting it about a single point, the point of deflection is translated along the target length, dramatically reducing the volume of the device. The magnetic cross field is translated along the target length using either mechanical systems to move permanent magnets, or electrical systems to energize an array of electromagnets.
Owner:L3 TECH INC

Laminar air turbine

InactiveUS20060002786A1Low costMaximize rotational forceWind motor controlPump componentsWind drivenTurbine wheel
The windmill assembly is a low drag, streamlined body of revolution that captures the kinetic energy content of the accelerated laminar air surrounding the body. The assembly includes a power-generating, wind-driven turbine that is compact, lightweight and capable of producing a substantially greater output than a conventional windmill with a comparable size rotor. The turbine includes a protruding aerodynamic nose and outer cowling that provide a streamlined, wind-collecting inlet section that constricts the incoming air stream and increases its velocity through the turbine blades. The turbine further includes an exit section designed to exhaust the air stream with a minimum of turbulence. One or more generators are coupled to a turbine wheel, and are electrically switched on and off to maximize the energy capture over the full range of ambient winds. The wind turbine assembly may be configured around a blimp-type body having counter-rotating turbine assemblies.
Owner:RICHTER DONALD L

Synchronized dual well variable stroke and variable speed pump down control with regenerative assist

A dual well pumping unit (12) has two hydraulic ram units (26), one for each well (preferably with each ram unit (26) having three hydraulic rams). Each hydraulic ram units is connected to first ram pump (18) and a second ram pump (20). The drive shaft (40) of the first ram pump (18) is coupled to the drive shaft (38) of the second ram pump (20) and to a rotor of a drive motor (16). The ram pump (18) and the ram pump (20) are preferably variable displacement piston pumps which are controlled by a microprocessor based controller (44), such that during the downstroke of the hydraulic ram (26) the ram pump (18) operates as an hydraulic motor powering the ram pump (20) and during the up stroke of the hydraulic ram (26) the ram pump (20) operates as a hydraulic motor to provide assist to the ram pump (18).
Owner:RAPTOR ELEVATOR SOLUTIONS LLC

Continuous Closed-Circuit Desalination Apparatus Without Containers

ActiveUS20080023410A1Simple inexpensive designFewer power componentsGeneral water supply conservationSeawater treatmentSaline waterControl system
An apparatus for continuous closed-circuit consecutive sequential desalination of a salt water solution by reverse osmosis that comprises a closed circuit system comprising one or more desalination modules having their respective inlets and outlets connected in parallel by conducing lines, each of desalination modules comprising of one or more membrane elements, a pressurizing device for creating counter pressure to enable reverse osmosis desalination and replacement of released permeate by fresh, a circulation system for recycling the desalinated solution through the desalination modules, a conducting line systems for permeate collection from the desalination modules, a conducting line system for removing brine effluent a valve system to enable periodic discharge of brine from the closed circuit without stopping desalination, and monitoring and control systems to enable continuous closed circuit desalination of desired recovery proceed in consecutive sequential steps under variable or constant pressure conditions.
Owner:DESALITECH

Power device equipped with combustion engine and stirling engine

A power unit for a vehicle, such as an automobile, includes an internal combustion engine 1 as a prime mover for the vehicle, a generator 3, and a Stirling engine 4 for driving the generator 3. The Stirling engine 4 uses the exhaust gas discharged by the internal combustion engine 1 as a high-temperature heat source. Power generated by the generator 3 is supplied to an electric motor 2 for driving auxiliary machines 7, 8 and 9, and to a battery 5 for supplying power to the electric motor 2. The engine speed of the Stirling engine 4 is controlled through the control of the load on the generator 3 by a field regulator 15. An optimum engine speed of the Stirling engine 4 is determined such that the brake horsepower of the Stirling engine 4 increases to a maximum or substantially maximum brake horsepower. The fuel consumption of the internal combustion engine 1 as the prime mover that produces waste heat as a high-temperature heat source for the Stirling engine 4 is reduced, and the auxiliary machines are driven so as to fully exercise their functions even in a state where the brake horsepower of the Stirling engine 4 is low.
Owner:HONDA MOTOR CO LTD

Construction machine and industrial vehicle having power supply system

A construction machine or industrial vehicle having a power supply system which includes a chargeable and dischargeable capacitor and a feeder circuit connecting a battery and the capacitor to a load capable of power running and regeneration. The capacitor is connected through a DC / DC converter which includes a controller that controls energy charged or discharged by the capacitor through the DC / DC converter to the load. The controller includes a power running / regeneration operation estimater which estimates an operation pattern including a point of change between power running and regeneration modes of the motor, or DC current supplied to an inverter, or control lever information and previously stored operation pattern information, and a capacitor target voltage calculator which controls an output command value of the DC / DC converter according to the estimated operation pattern so that a capacitor target voltage sequentially decreases in power running and sequentially increases in regeneration.
Owner:NIHON KENKI CO LTD

Air-conditioning system with full heat recovery

InactiveUS20070000274A1Reducing overall temperature of condensateUses cooling energyDomestic cooling apparatusEvaporators/condensersWater cyclingAir conditioning
The present invention relates to an air-conditioning system with full heat recovery comprising a condenser, an evaporator, a compressor and an expansion valve; one side of the condenser is disposed in a position corresponding to an indoor air outlet and an outdoor air inlet; the other side of the condenser is provided with an exhaust vent; and a cooling fan is disposed between the exhaust vent and a cooling air opening. The present air-conditioning system with full heat recovery can be connected with a condensate recycle system. The present invention utilizes low temperature, low humidity indoor exhaust air as cooling air for the evaporative condenser. It makes use of the sensible heat. (temperature difference) of indoor exhaust air as well as the latent heat (humidity difference) of indoor exhaust air, thereby attaining better condensation effects. It also uses the condensate to assist cooling and increases cooling and water saving effects. The present invention can be widely used in the air-conditioning systems in restaurants, hospitals, supermarkets, villas and offices and has wide applications.
Owner:LI ZHIMING

Construction machine and industrial vehicle having power supply system

A construction machine or industrial vehicle having a power supply system which includes a chargeable and dischargeable capacitor and a feeder circuit connecting a battery and the capacitor to a load capable of power running and regeneration. The capacitor is connected through a DC / DC converter which includes a controller that controls energy charged or discharged by the capacitor through the DC / DC converter to the load. The controller includes a power running / regeneration operation estimater which estimates an operation pattern including a point of change between power running and regeneration modes of the motor, or DC current supplied to an inverter, or control lever information and previously stored operation pattern information, and a capacitor target voltage calculator which controls an output command value of the DC / DC converter according to the estimated operation pattern so that a capacitor target voltage sequentially decreases in power running and sequentially increases in regeneration.
Owner:NIHON KENKI CO LTD

Vehicle Power Controller

InactiveUS20090167217A1Appropriately estimateLarge regeneration energyHybrid vehiclesBatteries circuit arrangementsPower controllerControl signal
An ECU executes a program including the steps of: calculating regenerative power value P based on a brake pressure (S100); calculating limit charging power WIN(B) to a battery (S102); calculating limit charging power WIN(C) to a capacitor (S104); when it is determined that regenerative power value P is larger than the sum of WIN(B) and WIN(C) (YES at S106), estimating (S108) that a large regenerative energy sufficient to fully charge the capacitor even if the battery is charged with priority would be generated; and transmitting a control signal (S110) to set output voltage of a boost converter to be not higher than the voltage of the capacitor so as to charge the battery with priority.
Owner:TOYOTA JIDOSHA KK

Method for optimizing the overall energy efficiency of an aircraft, and main power package for implementing same

A method and system limiting specific consumption of an aircraft by matching sizing of a power supply to actual power needs of a cabin pressure control system. The method optimizes overall efficiency of energy supplied onboard an aircraft including, in an environment near the cabin, at least one main power-generating engine, sized to serve as a single pneumatic energy-generating source for the cabin and as an at most partial propulsive, hydraulic, and / or electric energy-generating source for the rest of the aircraft. The method minimizes power differential between a nominal point of the power sources when the sources are operating, and a sizing point of non-propulsive energy contributions of the sources when the main engine has failed, by equally dividing power contributions of the main engines and the main power generator under nominal operating conditions and in an event of failure of a main engine.
Owner:SAFRAN HELICOPTER ENGINES

Device and method for regulating an energy recovery in a pedal-driven vehicle

A method for regulating an energy recovery in a pedal-driven vehicle having a crank drive, an electric auxiliary drive and a rechargeable energy source includes: detecting a direction of rotation of the crank drive, and recovery of energy and storage of energy in the energy source when the direction of rotation of the crank drive is directed backward.
Owner:ROBERT BOSCH GMBH

Heat storage device for an engine

A heat recovery system for an engine is disclosed herein utilizing a heat storage unit configured to store waste exhaust heat for subsequent use on engine starts in various systems. In this way, improved system operation can be obtained by re-using such waste heat.
Owner:FORD GLOBAL TECH LLC

Constant horsepower regenerative assist for a hydraulic rod pumping unit

A hydraulic rod pumping unit (12) has a constant horsepower regenerative assist featuring downstroke energy recovery. The pumping unit (12) has a hydraulic ram (26) connected to a ram pump (18). The drive shaft (40) of the ram pump (18) is coupled to the drive shaft (38) of an accumulator pump (20) and to a rotor of a drive motor (16). A hydraulic accumulator (24) is connected to the output of the accumulator pump (20). The ram pump (18) and the accumulator pump (20) are preferably variable displacement piston pumps which are controlled by a microprocessor based controller (44), such that during the downstroke of the hydraulic ram (26) the ram pump (18) operates as an hydraulic motor powering the accumulator pump (20) and during the up stroke of the hydraulic ram (26) the accumulator pump (20) operates as a hydraulic motor to provide assist to the ram pump (18).
Owner:WEATHERFORD TECH HLDG LLC

Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle

A vapor-compression refrigerant cycle system with a refrigeration cycle and a Rankine cycle includes a compressor, a radiator, a gas-liquid separator, a decompression device and an evaporator. In the vapor-compression refrigerant cycle system, a liquid pump is disposed for supplying the liquid refrigerant in the gas-liquid separator to a heater for heating the refrigerant, a cooling means is provided for cooling the liquid refrigerant to be sucked into the liquid pump, and an energy recovery unit for expanding the refrigerant flowing out of the heater is disposed to recover thermal energy in the refrigerant from the heater. When the Rankine cycle is set so that the energy recovery unit recovers the thermal energy, the cooling means cools the liquid refrigerant to be sucked into the liquid pump. Therefore, pumping efficiency of the liquid pump can be effectively improved.
Owner:DENSO CORP +1

Thermoelectric conversion apparatus

A thermoelectric conversion apparatus has an evaporator for heating a working medium in liquid-phase to evaporate the working medium, an electric generator for forming a concentration cell for electric power generation when it is supplied with a reactive gas and the working medium evaporated by the evaporator, and a gas-liquid separator for being supplied with a mixed gas of the working medium and a cathode off-gas discharged from the electric generator and separating the mixed gas into the working medium and the reactive gas. The thermoelectric conversion apparatus also has an anode supply passage for supplying the reactive gas separated by the gas-liquid separator to the electric generator, and a cathode supply passage for supplying the working medium separated by the gas-liquid separator through the evaporator to the electric generator.
Owner:HONDA MOTOR CO LTD

Devices for storing energy in the mechanical deformation of nanotube molecules and recovering the energy from mechanically deformed nanotube molecules

An energy storage device includes at least one nanotube. An energy storage mechanism converts energy external to the device into the appropriate levels of strain on the at least one nanotube to produce stored energy, and an energy recovery mechanism converts the energy released by relaxing the at least one nanotube back to energy external to the device.
Owner:MASSACHUSETTS INST OF TECH

Vehicle power controller

An ECU executes a program including the steps of: calculating regenerative power value P based on a brake pressure; calculating limit charging power WIN(B) to a battery; calculating limit charging power WIN(C) to a capacitor; when it is determined that regenerative power value P is larger than the sum of WIN(B) and WIN(C), estimating that a large regenerative energy sufficient to fully charge the capacitor even if the battery is charged with priority would be generated; and transmitting a control signal to set output voltage of a boost converter to be not higher than the voltage of the capacitor so as to charge the battery with priority.
Owner:TOYOTA JIDOSHA KK

Power device equipped with combustion engine and stirling engine

A power unit for a vehicle, such as an automobile, includes an internal combustion engine 1 as a prime mover for the vehicle, a generator 3, and a Stirling engine 4 for driving the generator 3. The Stirling engine 4 uses the exhaust gas discharged by the internal combustion engine 1 as a high-temperature heat source. Power generated by the generator 3 is supplied to an electric motor 2 for driving auxiliary machines 7, 8 and 9, and to a battery 5 for supplying power to the electric motor 2. The engine speed of the Stirling engine 4 is controlled through the control of the load on the generator 3 by a field regulator 15. An optimum engine speed of the Stirling engine 4 is determined such that the brake horsepower of the Stirling engine 4 increases to a maximum or substantially maximum brake horsepower. The fuel consumption of the internal combustion engine 1 as the prime mover that produces waste heat as a high-temperature heat source for the Stirling engine 4 is reduced, and the auxiliary machines are driven so as to fully exercise their functions even in a state where the brake horsepower of the Stirling engine 4 is low.
Owner:HONDA MOTOR CO LTD

Air-conditioner for vehicle

ActiveUS20170036514A1Power consumptionSmall power consumptionHybrid vehiclesAir-treating devicesElectric energyHeating cooling
An air-conditioner for a vehicle includes: a first circuit in which a cooling medium circulates; a heater heating the cooling medium; a first pump disposed in the first circuit; a second circuit cooling a heat emitting portion; a second pump disposed in the second circuit; an adjustment portion controlling a circulation amount of the cooling medium flowing in the first circuit and a circulation amount of the cooling medium flowing in the second circuit; and a control portion. The vehicle includes a regenerative device, and a storage device is charged with electric energy recovered by the regenerative device. When the regenerative device is recovering the electric energy and when it is determined that power in the storage device needs to be consumed, the control portion drives the heater to heat the cooling medium such that the power in the storage device is converted into heat energy.
Owner:DENSO CORP

Continuous closed-circuit desalination apparatus without containers

An apparatus for continuous closed-circuit consecutive sequential desalination of a salt water solution by reverse osmosis that comprises a closed circuit system comprising one or more desalination modules having their respective inlets and outlets connected in parallel by conducing lines, each of desalination modules comprising of one or more membrane elements, a pressurizing device for creating counter pressure to enable reverse osmosis desalination and replacement of released permeate by fresh, a circulation system for recycling the desalinated solution through the desalination modules, a conducting line systems for permeate collection from the desalination modules, a conducting line system for removing brine effluent a valve system to enable periodic discharge of brine from the closed circuit without stopping desalination, and monitoring and control systems to enable continuous closed circuit desalination of desired recovery proceed in consecutive sequential steps under variable or constant pressure conditions.
Owner:DESALITECH

Expander and heat pump using the expander

An expander of the invention includes: n-number of rotary type fluid mechanisms (where n is an integer equal to or greater than 2), a first suction port (41b) for sucking a working fluid into a suction-side space (55a) of a first fluid mechanism (41), a communication port (43a) connecting a discharge-side space (55b) of a k-th fluid mechanism (where k is an integer from 1 to n−1) and a (k+1)-th suction-side space (56a) to form a single space, and a discharge port (51a) for discharging the working fluid from the discharge-side space of an n-th fluid mechanism. The expander further includes a second suction port (72f) being capable of changing its connecting position to the suction-side space (55a) of the first fluid mechanism (41), for sucking the working fluid into the suction-side space (55a).
Owner:PANASONIC CORP

Circuit having snubber circuit in power supply device

A snubber circuit is provided. The snubber circuit includes a transistor structure and a first capacitor. The transistor structure includes a chip package and two pins. The chip package includes a transistor die and a molding compound encapsulating the transistor die. A first pin of the two pins is electrically connected to a first bonding pad and a second bonding pad of the transistor die, and a second pin of the two pins is electrically connected to a third bonding pad of the transistor die. The first pin or the second pin of the transistor structure is electrically connected to a terminal of the first capacitor.
Owner:SPI ELECTRONICS

Logic input device with energy recovery for an industrial automatic control system

An electronic equipment for onboard process control includes a first detection stage with a plurality input circuits, comprising each a first transformer having a primary coil connected to the corresponding input via a first hashing transistor, and a secondary coil connected to a diode rectifier circuit. A first clock sends control signals to the first hashing transistor. Adjusting means cooperate with the first clock for adjusting the frequency of the control signals or the cyclic ratio for adapting the voltage of said input circuit. A logic level detector is inserted in the secondary circuit of the first transformer, and is electrically connected to an acquisition circuit. A second recovery stage is connected to a battery supplying the equipment for restoring the energy drained by the input circuits of the first detection stage.
Owner:SOPRANO

Fluid systems for machines with integrated energy recovery circuit

A fluid system for a machine that includes a linkage. The fluid system includes an actuator, an accumulator, a pilot circuit, and a pressure reducing valve. The actuator is configured to manipulate the linkage. The accumulator is configured to store a fluid discharged by the actuator under pressure. The pilot circuit is fluidly coupled to the accumulator and is configured to receive the fluid from the accumulator. Further, the pressure reducing valve is positioned between the accumulator and the pilot circuit to regulate the pressure of the fluid delivered to the pilot circuit from the accumulator.
Owner:CATERPILLAR INC

Method and apparatus for delivery cart movement start and energy recovery

InactiveUS7779941B1Reducing and eliminating effort requiredReducing and eliminating effortBraking element arrangementsVehiclesDrive wheelEngineering
A method and apparatus for reducing or eliminating the energy required by an operator of a delivery cart to start the cart moving in a predetermined direction at a predetermined speed as well as to recover some or all of the energy used to start the cart moving. The apparatus includes a cart, a drive wheel, a motor for driving the drive wheel, and a rechargeable energy source to power said motor where the rechargeable energy source is recharged during normal, unpowered movement of the cart. The method includes charging a power source while moving the cart, actuating a directional button to initiate movement in a desired direction, energizing a clutch to couple the motor to the driven wheel, energizing the motor to drive the driven wheel in the desired direction. After a predetermined time period, set by a run timer, the clutch is decoupled while the motor remains activated, and thereafter the motor is deactivated.
Owner:HONDA MOTOR CO LTD

Electric Vehicle

An electric vehicle is provided. The electric vehicle may include a motor for driving a wheel; a brake device for braking the wheel in response to a driver's operation of a brake operation member; and a controller for controlling the motor in response to the driver's operation of an accelerator operation member. The controller may include a first motor control section for causing the motor to be placed in a regenerative braking mode to generate a first regenerative braking force, when a displacement amount of the accelerator operation member decreases to an amount less than a predetermined reference displacement amount; and a second motor control section for causing the motor to generate a second regenerative braking force which is a sum of the first regenerative braking force and a predetermined additional braking force, in response to the operation of the brake operation member.
Owner:KAWASAKI MOTORS LTD

Expander and heat pump using the expander

InactiveUS20090241581A1High power generation efficiencyRotation speed of be controlOscillating piston enginesCompression machines with non-reversible cycleWorking fluidEngineering
An expander of the present invention includes a plurality of suction ports for guiding a working fluid to a working chamber, and the plurality of suction ports includes a first suction port (71) and a second suction port (73) with a differential pressure valve (72). The ratio R2 of time length of an expansion process of expanding the working fluid in the working chamber to time length of a suction process in which the working fluid is sucked into the working chamber (55a) from the first suction port (71) and the second suction port (73) by opening the differential pressure valve (72) is smaller than the ratio R1 of the time length of the expansion process to a suction process in which the working fluid is sucked into the working chamber (55a) only from the first suction port (71) by closing the differential pressure valve (72).
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products