Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

452results about "Conditional code generation" patented technology

Reconfigurable data path processor

A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Owner:STC UNM +1

Shared register architecture for a dual-instruction-set CPU to facilitate data exchange between the instruction sets

A dual-instruction set central processing unit (CPU) is capable of executing instructions from a reduced instruction set computer (RISC) instruction set and from a complex instruction set computer (CISC) instruction set. Data and address information may be to transferred from a CISC program to a RISC program running on the CPU by using shared registers. The architecturally-defined registers in the CISC instruction set are merged or folded into some of the architecturally-defined registers in the RISC architecture so that these merged registers are shared by the two instructions sets. In particular, the flags or condition code registers defined by each architecture are merged together so that CISC instructions and RISC instructions will implicitly update the same merged flags register when performing computational instructions. The RISC and CISC registers are folded together so that the CISC flags are at one end of the register while the frequently used RISC flags are at the other end, but the RISC instructions can read or write any bit in the merged register. The CISC code segment base address is stored in the RISC branch count register, while the CISC floating point instruction address is stored in the RISC branch link register. The general-purpose registers (GPR's) are also merged together, allowing a CISC program to pass data to a RISC program merely by writing one of its GPR's, switching control to the RISC program, and the RISC program reading one of its GPR's that is merged with and corresponds to the CISC GPR that was written to by the CISC program.
Owner:SAMSUNG ELECTRONICS CO LTD

Method to detect IEEE overflow and underflow conditions

A method is disclosed for detecting overflow and underflow conditions using a status register having a main status field and first and second alternate status fields. The first and second alternate status fields are set to chop and wre modes, respectively, and chop and wre results are determined for an arithmetic operation using the first and second alternate status fields. The chop and wre results are tested against test values to determine whether an overflow or underflow condition exists.
Owner:INTEL CORP

Efficient handling of vector high-level language conditional constructs in a SIMD processor

The present invention provides an efficient method to implement nested if-then-else conditional statements in a SIMD processor, which requires only one vector compare instruction for both if and else parts of the conditional construct. No stack and stack-handling instructions are needed for vector condition codes. Two condition code flag bits representing if and else parts of testing per element provide for nesting of multiple if-then-else. All SIMD instructions are conditional including the vector compare instruction, and this provides a method for aggregating multiple conditions in nested if-then-else statements. M full levels of if-then-else nesting requires (2M−1) nodes or vector test instructions and 2M+1 condition code flags per vector element. Also, capability to compare any element of first source vector register with any element of second source vector is provided.
Owner:CUE BIOTECH

Vector processor with special purpose registers and high speed memory access

InactiveUS20060259737A1Limited instruction widthGreat instruction widthConditional code generationRegister arrangementsVector processorHigh speed memory
A vector processor includes a set of vector registers for storing data to be used in the execution of instructions and a vector functional unit coupled to the vector registers for executing instructions. The functional unit executes instructions using operation codes provided to it which operation codes include a field referencing a special register. The special register contains information about the length and starting point for each vector instruction. The processor includes a high speed memory access system to facilitate faster operation.
Owner:MEADLOCK JAMES W MEAD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products