An apparatus and method is described herein for avoiding inefficient core hopping and providing hardware assisted power state selection. Future idle-activity of cores is predicted. If the residency of activity patterns for efficient core hop scenarios is predicted to be large enough, a core is determined to be efficient and allowed. However, if efficient activity patterns are not predicted to be resident for long enough—inefficient patterns are instead predicted to be resident for longer—then a core hop request is denied. As a result, designers may implement a policy for avoiding core hops that weighs the potential
gain of the core hop, such as alleviation of a core hop condition, against a penalty for performing the core hop, such as a temporal penalty for the core hop. Separately, idle durations associated with hardware power states for cores may be predicted in hardware. Furthermore, accuracy of the idle duration prediction is determined. Upon
receipt of a request for a core to enter a power state, a
power management unit may select either the hardware predicted power state, if the accuracy is high enough, or utilize the requested power state, if the accuracy of the hardware prediction is not high enough.