Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1407 results about "Oxygen storage" patented technology

Methods of oxygen storage for subsequent use span many approaches, including high pressures in oxygen tanks, cryogenics, oxygen-rich compounds and reaction mixtures, and chemical compounds that reversibly release oxygen upon heating or pressure change. O₂ is the second most important industrial gas.

Exhaust gas treatment catalyst for internal combustion engines with two catalytically active layers on a carrier structure

A catalyst for treating the exhaust gas from internal combustion engines is provided, wherein the catalyst contains two catalytically active layers supported on a support. The first catalytically active layer contains a platinum group metal in close contact with all of the constituents of the first catalytically active layer, wherein the constituents of the first catalytically active layer include particulate aluminum oxide; particulate oxygen storage material, such as cerium oxide, cerium/zirconium and zirconium/cerium mixed oxides, and alkaline earth metal oxides. The second catalytically active layer, which is in direct contact with the exhaust gas, contains particulate aluminum oxide and at least one particulate oxygen storage material, such as cerium oxide, cerium/zirconium and zirconium/cerium mixed oxides. Rhodium is supported on part of the aluminum oxides in the second catalytically active layer or on the particulate oxygen storage material in the second catalytically active layer. By providing the platinum group metal in close contact with all of the constituents of the first catalytically active layer, improved conversion efficiency of the impurities in the exhaust gas can be achieved.
Owner:UMICORE AG & CO KG +1

Air-Fuel ratio control system for internal combustion engine and control method thereof

An air-fuel ratio control system for an internal combustion engine estimates an oxygen storage amount of a catalyst based on a record of an oxygen storage amount, and controls an air-fuel ratio based on the estimated oxygen storage amount. The catalyst is divided into multiple sections in a flow direction of an exhaust gas, the oxygen storage amount in a specified section is estimated according to a behavior of an exhaust gas on upstream and downstream sides of the respective specified sections, and the air-fuel ratio is controlled based on the estimated oxygen storage amount in the specified section.
Owner:TOYOTA JIDOSHA KK

High temperature ammonia SCR catalyst and method of using the catalyst

A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams. The catalyst and the method may have special application to selective reduction of nitrogen oxides in exhaust gas from gas turbines and gas engines, although the catalyst and the method have broad application to a wide range of gas streams that have excess oxygen and high temperatures. The temperature of exhaust gas from gas turbines and gas engines is high. Both the high temperature and the low levels of inlet NOx are challenging for selective catalytic reduction (SCR) catalysts.
Owner:CATALYTIC SOLUTIONS INC

NOx reduction compositions for use in FCC processes

Processes for preparing a composition comprising (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, and (iii) an oxygen storage component are disclosed. Preferably, the process comprise forming a single slurry of components (i)-(iii), spray drying and calcining to obtain metal oxide particles comprising components (i)-(iii). Preferably, the slurry comprise a base peptized acidic metal oxide containing slurry wherein the component (ii) is provided in the slurry as a metal of the base. Compositions prepared are impregnated with a noble metal to provide compositions useful to reduce gas phase reduced nitrogen species and NOx in an effluent off gas of a fluid catalytic cracking regenerator.
Owner:WR GRACE & CO

Catalyst containing little or no rhodium for purifying exhaust gases of internal combustion engine

Disclosed herein is a three-way conversion (TWC) catalyst containing little or no rhodium for purifying exhaust gases of an internal combustion engine, having a multi-layers structure, including a lower layer including an alumina support and an oxygen storage material; an intermediate layer including alumina support impregnated only with palladium and a zirconia-rich oxygen storage material; and an upper layer including alumina support impregnated with platinum, minimum rhodium and platinum, or platinum-palladium and a ceria-rich oxygen storage material.
Owner:HEESUNG CATALYSTS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products