Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1606 results about "Ethylene carbonate" patented technology

Ethylene carbonate (sometimes abbreviated EC) is the organic compound with the formula (CH₂O)₂CO. It is classified as the carbonate ester of ethylene glycol and carbonic acid. At room temperature (25 °C) ethylene carbonate is a transparent crystalline solid, practically odorless and colorless, and somewhat soluble in water. In the liquid state (m.p. 34-37 °C) it is a colorless odorless liquid.

Lithium secondary battery

Disclosed is a rechargeable lithium battery including an electrolyte comprising an ethylene carbonate compound represented by Formula 1, a non-aqueous organic solvent, and a lithium salt; a negative electrode including a negative active material including a silicon-included alloy and being capable of reversibly forming a compound by reacting with lithium; and a positive electrode including a positive active material comprising a compound being capable of reversibly intercalating and deintercalating lithium ions or a material capable of forming a compound containing lithium by reversibly reacting with lithium. (wherein X and Y are each independently selected from the group consisting of a hydrogen, a halogen, and a fluorinated alkyl having C1 to C5; at least one of X and Y is selected from the group consisting of a halogen, and a fluorinated alkyl having C1 to C5; and M is at least one selected from the group consisting of Al, Sn, Ag, Fe, Bi, Mg, Zn, In, Ge, Pb, and Ti.)
Owner:SAMSUNG SDI CO LTD

Lithium ion battery with improved safety

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC / DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.
Owner:UCHICAGO ARGONNE LLC

Lithium secondary battery

A rechargeable lithium battery including a positive electrode, a negative electrode and a nonaqueous electrolyte, said positive or negative electrode being an electrode which has, on a current collector, a thin film of active material that stores and releases lithium, the thin film of active material being divided into columns by gaps formed therein in a manner to extend in its thickness direction, and the columnar portions being at their bottoms adhered to the current collector, the rechargeable lithium battery being characterized in that the nonaqueous electrolyte includes a mixed solvent consisting of two or more different solvents and containing at least ethylene carbonate and / or vinylene carbonate as its constituent.
Owner:SANYO ELECTRIC CO LTD

Non-aqueous electrolyte secondary battery

InactiveUS20070072074A1Poor battery performanceIon conductivityFinal product manufactureOrganic electrolyte cellsCharge dischargeSolvent
A non-aqueous electrolyte secondary battery using silicon as negative electrode active material and containing fluoroethylene carbonate in a non-aqueous electrolyte is provided that minimizes gas generation during storage in a charged state and improves charge-discharge cycle performance. The non-aqueous electrolyte secondary battery is provided with a negative electrode containing silicon as a negative electrode active material, a positive electrode, and a non-aqueous electrolyte containing electrolyte salts and a solvent. The non-aqueous electrolyte contains fluoroethylene carbonate, and the electrolyte salts include LiBF4 and another electrolyte salt that is less consumed relative to LiBF4 during charge-discharge cycling.
Owner:SANYO ELECTRIC CO LTD

Nonaqueous Electrolyte and Lithium ion Secondary Battery Using Same

Obtained are a nonaqueous electrolyte solution suitable for a lithium secondary battery having a high energy density, wherein a decrease in the capacity due to charge / discharge cycles is remarkably small and no gas is generated when charging or storing the battery; and a lithium secondary battery using the same. This nonaqueous electrolyte solution is a solution containing a nonaqueous solvent, the nonaqueous solvent containing a fluorinated solvent including a linear fluorinated carbonate (a1) and a fluorinated ethylene carbonate (a2), and the total amount of the fluorinated solvent in the nonaqueous solvent is in the range of from 50 to 100 weight %.
Owner:MITSUI CHEM INC

Nonaqueous electrolytic solution and lithium secondary battery

An object of the invention is to provide such a battery that has a high capacity, is excellent in storage characteristics, cycle characteristics and continuous charging characteristics, and is small in gas generation amount, whereby size reduction and improvement in performance of a lithium secondary battery can be attained. The present invention relates to a nonaqueous electrolytic solution comprising a lithium salt and a nonaqueous solvent dissolving the same, wherein the electrolytic solution contains, as the lithium salt, LiPF6 in a concentration of from 0.2 to 2 mole / L, and LiBF4 and / or a compound represented by the following formula (1) in a molar ratio of from 0.005 to 0.4 with respect to LiPF6, and the nonaqueous solvent mainly comprises (1) ethylene carbonate and / or propylene carbonate, (2-1) a symmetric linear carbonate, (2-2) an asymmetric linear carbonate, and (3) vinylene carbonate.
Owner:MU IONIC SOLUTIONS CORP +1

Nonaqueous Electrolyte Solution and Lithium Secondary Battery Using Same

Disclosed is a nonaqueous electrolyte solution containing a sultone compound represented by the Formula 1 below (wherein R1 to R4 respectively represent a hydrogen, a fluorine, a hydrocarbon group with 1 to 12 carbon atoms that may contain fluorine atom(s), n represents an integer of 0 to 3, and when n is 2 or 3, the two or three R3 groups are independent from each other and the two or three R4 groups are independent from each other), and an ethylene carbonate having a hydrogen atom substituted by a fluorine atom. Also disclosed is a lithium secondary battery employing the nonaqueous electrolyte solution. This nonaqueous electrolyte solution does not cause an increase in the internal resistance of a nonaqueous electrochemical device and improves the lifespan characteristics of the device. The lithium secondary battery containing the nonaqueous electrolyte solution exhibits greatly improved cycle charge / discharge characteristics at high temperature, and has excellent charge / discharge load characteristics.
Owner:MITSUI CHEM INC

Electrolyte for lithium secondary battery and lithium secondary battery including the same

An electrolyte for a lithium secondary battery and a lithium secondary battery including the same are provided. The electrolyte includes a non-aqueous organic solvent, lithium salt, and an additive that is either a dicarboxylic acid anhydride and a halogenated ethylene carbonate or a diglycolic acid anhydride and a halogenated ethylene carbonate.
Owner:SAMSUNG SDI CO LTD

High-capacity lithium-ion battery electrolyte of considering high-and-low temperature performance, preparation method and lithium-ion battery

The invention discloses a high-capacity lithium-ion battery electrolyte of considering high-and-low temperature performance. The electrolyte comprises a non-aqueous solvent, lithium hexafluorophate, a negative film-forming additive, an inflatable inhibition additive and a low-impedance additive, wherein the negative film-forming additive is prepared from fluoroethylene carbonate which accounts for 3%-15% of total mass of the electrolyte; the inflatable inhibition additive is prepared from one or two of 1,3-propene sultone or anhydride compounds which account for 0.3%-5% of total mass of the electrolyte; and the low-impedance additive is prepared from one or two of lithium difluorophosphate and difluoride phosphate lithium oxalate which account for 0.2%-3% of total mass of the electrolyte. The electrolyte is suitable for a high-nickel positive electrode and silicon-carbon composite negative electrode lithium-ion battery; the high-temperature storage performance and the low-temperature discharge performance of the lithium-ion battery are improved while the room-temperature cycle performance is considered; and meanwhile, the invention further provides a preparation method of the electrolyte and the high-capacity lithium-ion battery of using the electrolyte.
Owner:GUANGZHOU TINCI MATERIALS TECH

Electrolyte solution and battery

An electrolyte solution and a battery which are capable of improving cycle characteristics are provided. An anode includes a simple substance, an alloy or a compound of a metal element or a metalloid element capable of forming an alloy with lithium as an anode active material. A separator is impregnated with an electrolyte solution formed through dissolving an electrolyte salt in a solvent. The electrolyte salt includes a first electrolyte salt including LiB(C2O4)2 and a second electrolyte salt including at least one kind selected from the group consisting of LiPF6, LiBF4, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiClO4, LiAsF6 and LiC(CF3SO2)3. In the solvent, 4-fluoroethylene carbonate is included. A coating is formed on the anode by the first electrolyte salt, and high ionic conductivity can be obtained by the second electrolyte salt. Further an oxidation-decomposition reaction of the electrolyte solution which occurs in a cathode can be prevented by 4-fluoroethylene carbonate.
Owner:MURATA MFG CO LTD

Power battery and lithium ion electrolyte thereof

The invention provides a power battery and a lithium ion electrolyte thereof. The lithium ion electrolyte comprises a non-aqueous organic solvent, lithium salt and an additive, wherein the additive comprises a first additive and a second additive, and the first additive comprises silane sulfate; the first additive accounts for 0.05 to 10% of the total weight of the electrolyte, and the second additive is an auxiliary additive and comprises one or more of vinylene carbonate, propane sultone, fluoroethylene carbonate, vinyl ethylene carbonate, ethylene sulfite, adiponitrile, and succinic anhydride in any proportion; the second additive accounts for 0.1-5wt% of the total weight of the electrolyte, and the non-aqueous organic solvent is a carbonic ester solvent, a carboxylic ester solvent, an ether solvent or a ketone solvent; and the lithium salt comprises primary lithium salt and secondary lithium salt.
Owner:SHENZHEN 3SUN ELECTRONICS

Nonaqueous electrolytic solution and lithium secondary battery

An object of the invention is to provide such a battery that has a high capacity, is excellent in storage characteristics, cycle characteristics and continuous charging characteristics, and is small in gas generation amount, whereby size reduction and improvement in performance of a lithium secondary battery can be attained.The present invention relates to a nonaqueous electrolytic solution comprising a lithium salt and a nonaqueous solvent dissolving the same, wherein the electrolytic solution contains, as the lithium salt, LiPF6 in a concentration of from 0.2 to 2 mole / L, and LiBF4 and / or a compound represented by the following formula (1) in a molar ratio of from 0.005 to 0.4 with respect to LiPF6, and the nonaqueous solvent mainly comprises (1) ethylene carbonate and / or propylene carbonate, (2-1) a symmetric linear carbonate, (2-2) an asymmetric linear carbonate, and (3) vinylene carbonate.
Owner:MU IONIC SOLUTIONS CORP +1

High-voltage rate electrolyte with high-and-low temperature performance and lithium ion battery using electrolyte

The invention discloses a high-voltage rate electrolyte with high-and-low temperature performance and a lithium ion battery using the electrolyte. The electrolyte comprises a non-aqueous solvent, a lithium salt dissolved in the non-aqueous solvent and additives, wherein the non-aqueous solvent comprises propylene carbonate (PC) and linear carboxylic ester; and the additives comprise citraconic anhydride, lithium difluorophosphate (LiPO<2>F<2>), fluoroethylene carbonate, ethylene sulfate and 1, 2-di(2-cyanoethoxyl)ethane. By applying the synergistic effect generated by the solvent system and the additive optimization combination to the lithium ion battery, excellent cycle life, low-temperature discharge characteristic and high-temperature storage characteristic of the battery still can be maintained at high-voltage rate.
Owner:EVE ENERGY CO LTD

Electrolyte for rechargeable lithium battery and rechargeable lithium battery

An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1:wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
Owner:SAMSUNG SDI CO LTD

High-nickel ternary lithium ion power battery electrolyte and high-nickel ternary lithium ion power battery

The invention discloses a high-nickel ternary lithium ion power battery electrolyte and a high-nickel ternary lithium ion power battery. The electrolyte includes a non-aqueous organic solvent, a lithium salt, a conductive additive, a film forming additive and an infiltration additive, wherein the conductive additive is lithium difluorophosphate, the film forming additive is ethylene sulfate, and the infiltration additive is at least one of fluorophosphazene and fluoroethylene carbonate; and synergism and mutual promotion of the three additives makes an excellent SEI film be formed on the surface of an electrode and effectively promotes all dynamic processes in the lithium ion battery. The power battery electrolyte has the advantages of good lithium ion transmission characteristic, good oxidation resistance, guaranteeing of high power characteristic and good cycle performances of the power battery, and high safety.
Owner:GUANGZHOU TINCI MATERIALS TECH

High-voltage electrolyte and lithium ion battery using electrolyte

The invention discloses high-voltage electrolyte and a lithium ion battery using the electrolyte. The invention is realized by the following technical scheme: the high-voltage electrolyte comprises a non-aqueous solvent, lithium salt and an additive, wherein the non-aqueous solvent is a carboxylic ester compound which accounts for 1-40% by mass of the high-voltage electrolyte; the additive is any one or more of lithium bis(oxalate)borate (Li BOB), fluoroethylene carbonate (FEC) and ethylene glycol bis(propionitrile) ether. The high-voltage electrolyte contains carboxylic ester solvents capable of improving an electrode / electrolyte interface, and through optimized combination of the carboxylic ester solvents, Li BOB, FEC, ethylene glycol bis(propionitrile) ether and other various additives, the good cycle performance of a high-voltage battery can be ensured, meanwhile, the high-temperature storage performance of the high-voltage battery can be effectively improved, and gas generation of the battery under high-voltage high-temperature storage condition can be obviously inhibited.
Owner:DONGUAN KAIXIN BATTERY MATERIAL

Lithium ion battery electrolyte with both high and low temperature performances

The invention relates to the technical field of lithium ion electrolytes, and in particular relates to a lithium-ion battery electrolyte with both high and low temperature performances. The electrolyte comprises lithium hexafluorophosphate, mixed organic solvents, filming additives, additives for improving the dielectric constant and the low temperature infiltration capability, and a lithium salt type additive, wherein the mixed organic solvents comprise a carbonic ester solvent and a linear carboxylic ester solvent; the linear carboxylic ester solvent in the mixed organic solvents is one or a mixture of more than two of ethyl propionate, propionic acid n-propyl ester, n-propyl acetate, acetic acid n-butyl ester and isobutyl acetate; and the additives for improving the dielectric constant and the low temperature infiltration capability are one or a mixture of more than two of fluoro ethylene carbonate, difluoro ethylene carbonate and 4-trifluoromethyl ethylene carbonate. A battery prepared from the lithium-ion battery electrolyte with both high and low temperature performances is long in service life, and both the good low temperature discharge performance of the battery is ensured, and the storage performance of the battery at the high temperature of 60 DEG C is effectively considered.
Owner:DONGGUAN SHANSHAN BATTERY MATERIALS

Method for preparing ion liquid type gel polymer electrolyte and battery by in situ polymerization

The invention relates to a method for preparing ionic liquid type gel polymer electrolyte through home position polymerization. The method comprises the following steps: taking acrylonitrile and polyethylene glycol dimethyl acrylic acid ester as monomers, taking ethylene carbonate as an organic plasticizer, taking azo diisobutyl cyanogen as an initiator, taking lithium perchlorate as a lithium salt, adding ionic liquid 1-butyl-3-methylimidazole tetrafluoborate as the component of the electrolyte, and adopting a free radical initiation and home polymerization mode to prepare the stable ionic liquid type gel polymer electrolyte. The home polymerization mode has a simple and feasible process, and is capable of directly assembling a lithium cell while simultaneously preparing the electrolyte. The prepared ionic liquid type gel polymer electrolyte has higher room temperature conductivity, good dimensional stability and mechanic properties, and can also be applied to dye sensitization solar cells. The prepared ionic liquid type gel polymer electrolyte cell can avoid the leakage and volatilization of the electrolyte and improve the safety of the cell.
Owner:CHANGZHOU INST OF ENERGY STORAGE MATERIALS &DEVICES

Paint stripping compositions

This invention concerns a composition useful as a paint remover, comprising: an organic carbonate, an alcohol, an activator, hydrogen peroxide, and water. The alcohol may be benzyl alcohol. The organic carbonate may be propylene carbonate, ethylene carbonate, or combination thereof. The activator may be an alkyl-substituted cycloalkane (naphthene), a soy oil, an alkyl soyate, or combination thereof.
Owner:HUNTSMAN PETROCHEMICAL LLC

Lithium ion secondary battery and electrolyte thereof

The invention provides a lithium ion secondary battery and an electrolyte thereof. The electrolyte of the lithium ion secondary battery comprises lithium salt, a non-aqueous solvent, and an addition agent at least containing 1, 3-propane sultone (PS), fluoroethylene carbonate (FEC) and an s-triazine structural compound, wherein the s-triazine structural compound is represented by a general formula (1), a general formula (2) or a general formula (3); in the general formula (1), the general formula (2) or the general formula (3), n is an integral number of 0-5, and R1, R2 and R3 are hydrogen atoms or C1-C6 alkyl group; and the hydrogen atoms on the alkyl group can be partially or wholly replaced by fluorine atoms. The lithium ion secondary battery comprises a positive plate, a negative plate, a diaphragm arranged between the adjacent positive plate and the negative plate, and the electrolyte of the lithium ion secondary battery. According to the lithium ion secondary battery and the electrolyte thereof provided by the invention, oxidation reaction between the electrolyte and a cathode material can be inhibited, and the cycle performance under the conditions of high temperature and high voltage is improved.
Owner:NINGDE AMPEREX TECH

Lithium sulfur battery

A lithium sulfur battery comprising an electrolyte solvent which comprises at least one fluorosubstituted compound is described. Preferred fluorosubstituted compounds which are predominantly solvents are notably selected from the group consisting of fluorosubstituted carboxylic acid esters, fluorosubstituted carboxylic acid amides, fluorosubstituted fluorinated ethers, fluorosubstituted carbamates, fluorosubstituted cyclic carbonates, fluorosubstituted acyclic carbonates, fluorosubstituted ethers, perfluoroalkyl phosphoranes, fluorosubstituted phosphites, fluorosubstituted phosphates, fluorosubstituted phosphonates, and fluorosubstituted heterocycles. Monofluoroethylene carbonate, cis-difluoroethylene carbonate, trans-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, 4-fluoro-4-methyl-1,3-dioxolane-2-one, 4-fluoro-4-ethyl-1,3-dioxolane-2-one, 2,2,2-trifluoroethyl-methyl carbonate, 2,2,2-trifluoroethyl-fluoromethyl carbonate are preferred. The solvent may further comprise a non-fluorinated solvent, e.g., ethylene carbonate, a dialkyl carbonate, or propylene carbonate. Use of such fluorinated compound as additive for such batteries and specific electrolyte solutions.
Owner:SOLVAY FLUOR GMBH DE

Additive for lithium ion rechageable battery cells

The present invention claims the addition of vinylene carbonate (VC) and optionally also fluoroethylene carbonate to the electrolyte of lithium ion cells having a structural silicon composite anode, i.e. an anode containing fibres or particles of silicon. The additive significantly improves the cycling performance of the cells. A VC content in the range 3.5-8 wt % based on the weight of the electrolyte has been found to be optimum.

Additive for lithium ion rechageable battery cells

The present invention claims the addition of vinylene carbonate (VC) and optionally also fluoroethylene carbonate to the electrolyte of lithium ion cells having a structural silicon composite anode, i.e. an anode containing fibers or particles of silicon. The additive significantly improves the cycling performance of the cells. A VC content in the range 3.5-8 wt % based on the weight of the electrolyte has been found to be optimum.
Owner:SK ON CO LTD

Paint coatings remover comprising propylene carbonate and hydrogen peroxide

This invention concerns a composition useful as a paint remover, comprising: alkylene carbonate such as propylene carbonate or ethylene carbonate, hydrogen peroxide, and water, and optionally an alcohol such as benzyl alcohol. In another broad respect, this invention concerns a process for removing paint, comprising: applying a composition containing alkylene carbonate, hydrogen peroxide, and water to a painted surface for a time and under conditions effective to cause blistering or bubbling of the paint. In another broad respect, this invention is a composition useful as a paint remover, comprising: dialkyl carbonate, hydrogen peroxide, and water, optionally containing an alcohol, optionally containing a glycol ether. In another broad respect, this invention is a process for removing paint, comprising: applying a composition containing dialkyl carbonate, hydrogen peroxide, and water to a painted surface for a time and under conditions effective to cause blistering or bubbling of the paint.
Owner:HUNTSMAN PETROCHEMICAL LLC +1

Matched silicon-carbon anode lithium-ion battery electrolyte and silicon-carbon anode lithium-ion battery

The invention relates to the technical field of the lithium-ion batteries, and in particular relates to a matched silicon-carbon anode lithium-ion battery electrolyte and a silicon-carbon anode lithium-ion battery. The lithium-ion battery electrolyte is composed of a non-aqueous organic solvent, a lithium salt and additives, wherein the additives comprise fluoroethylene carbonate, ethylene sulfite and a borate compound with a M type structure. Compared with the prior art, a SEI film formed on the surface of the electrode is more stable and compact through the synergistic effect produced by the combination use of more than three additives, the physical structure stability and chemical structure stability of the silicon-carbon anode surface are improved, so that the battery has good circulation performance and high-temperature storage performance, and meanwhile, the battery gas production is restrained.
Owner:DONGGUAN SHANSHAN BATTERY MATERIALS

Nonaqueous electrolyte solution and lithium secondary battery using same

The present invention provides a nonaqueous electrolytic solution exhibiting excellent battery characteristics such as electrical capacity, cycle property and storage property and capable of maintaining the battery characteristics for a long tire, and a lithium secondary battery using the nonaqueous electrolytic solution.A nonaqueous electrolytic solution for a lithium secondary battery, in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.1 to 10% by weight of an ethylene carbonate derivative represented by the general formula (I) shown below, and 0.01 to 10% by weight of (A) a triple bond-containing compound and / or (B) a pentafluorophenyloxy compound represented by the general formula (X) shown below:wherein R1 to R3 each independently represents a hydrogen atom, a halogen atom, an alkenyl group, an alkynyl group or an aryl group, provided that ethylene carbonate is excluded from the definition of the ethylene carbonate derivative,wherein R15 represents an alkylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group or an alkanesulfonyl group.
Owner:MU IONIC SOLUTIONS CORP

Synthesis process of propylene carbonate or vinyl carbonate

The synthesis process of propylene carbonate or vinyl carbonate includes adding urea, propylene glycol or ethylene glycol in the molar amount of 1-100 times that of urea and solid alkali in the molaramount of 0.001-10 times that of urea into the reactor and reaction at the temperature of 100-200 deg.c and vacuum degree 50-600 mmHg or nitrogen blowing in the flow rate of 1-1000 ml / ml cat. min for0.5-20 hr. The present invention has the advantages of repeatable catalyst performance, material converting rate near the theoretical number, high product selectivity, less side product, etc.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Lithium-ion battery and electrolyte thereof

The invention provides a lithium-ion battery and an electrolyte thereof. The electrolyte of the lithium-ion battery comprises a lithium salt and a non-aqueous solvent and at least comprises 1,3-propane sultone, fluorinated ethylene carbonate and a pyrimidine-structural compound additive. The lithium-ion battery comprises a positive pole piece, a negative pole piece, a diaphragm spaced between the positive pole piece and the negative pole piece which are adjacent, and an electrolyte, wherein the electrolyte is the electrolyte of the lithium-ion battery provided by the invention. According to the lithium-ion battery and the electrolyte thereof, provided by the invention, the oxidation reaction between the electrolyte and a positive-pole material can be inhibited, so that the cycle performance under the conditions of high temperature and pressure is improved.
Owner:NINGDE AMPEREX TECH

Paint stripping compositions

This invention concerns a composition useful as a paint remover, comprising: an organic carbonate, an alcohol, an activator, hydrogen peroxide, and water. The alcohol may be benzyl alcohol. The organic carbonate may be propylene carbonate, ethylene carbonate, or combination thereof. The activator may be an alkyl-substituted cycloalkane (naphthene), a soy oil, an alkyl soyate, or combination thereof.
Owner:HUNTSMAN PETROCHEMICAL LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products