Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40results about How to "Limit transport" patented technology

Device and method for intra-bronchial provision of a therapeutic agent

The present invention includes an intra-bronchial device, system, and method for providing a therapeutic agent to a patient. A device includes a flow control member for placement in an air passageway communicating with a lung portion, and when deployed in the air passageway inhibits a therapeutic agent distal of the control member from moving proximal of the control member, and includes the therapeutic agent associated with the flow control member. The control member may inhibit movement of the therapeutic agent by limiting airflow, and may include a one-way valve limiting exhalation of air from the lung portion. The control member may include a flexible membrane impervious to air flow, or a separator arranged to inhibit the movement of the therapeutic agent. The control member may include at least one anchor, and the anchor may be releasable from the air passageway for removal of the intra-bronchial device.
Owner:GYRUS ACMI INC (D B A OLYMPUS SURGICAL TECH AMERICA)

Gas Diffusion Electrodes and Methods for Fabricating and Testing Same

Highly effective, standalone gas-diffusion electrodes (GDEs) and the methods for their manufacture and test are disclosed, Nanocataiysis are directly bonded on a gas diffusion layer, so that the integrity of the catalyst layer holds without polymer electrolyte membrane, facilitating minimization of electronic, prottmtc, and diffusion resistances in the catalyst layer. The devised embodiments provide examples showing a facile hanging-strip method for testing the standalone GDEs in a solution electrochemical cell, which removes the mA-cm−2-scale mass transport limited currents on rotating disk electrodes to allow studies of reaction kinetics on single electrode over sufficiently wide current ranges (up to A cm−2) without mass transport limitation. Ultralow-Pi-content GDEs are fabricated as the cathode for hydrogen evolution in water eiectrolyzers and as the anode for hydrogen oxidation in hydrogen fuel cells. High performance GDEs with low loadings of platinum group metals are being developed for oxygen evolution reaction at the anode of water electrolyzers and for the oxygen reduction reaction at the cathode of fuel cells.
Owner:BROOKHAVEN SCI ASSOCS

Quantum interference effect transistor (QUIET)

A molecular-based switching device and method for controlling charge transport across a molecule. The molecular-based switching device includes a molecule having first and second nodes in between which destructive quantum interference restricts electrical conduction from the first node to the second node in an off-state, a first electrode connected to the first node and configured to supply charge carriers to the first node, a second electrode connected to the second node and configured to remove the charge carriers from the second node, and a control element configured to reduce coherence in or alter charge transport paths between the first and second nodes so as to reduce existing destructive quantum interference and permit flow of the charge carriers from the first node to the second node. The method applies an electric potential between the first and second electrodes, controls coherence in charge transport paths between the first and second nodes so as to maintain or reduce destructive interference between the first and second nodes of the molecule, and injects charge carriers from the first electrode into the first node and collects the charge carriers from the second node at the second electrode when the coherence is controlled to reduce destructive interference.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Solid-state membrane module

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
Owner:AIR PROD & CHEM INC

Quantum interference effect transistor (QuIET)

InactiveUS7786472B2Reduce coherenceMaintain and reduce destructive interferenceNanoinformaticsSolid-state devicesCharge carrierCarrier signal
A molecular-based switching device and method for controlling charge transport across a molecule. The molecular-based switching device includes a molecule having first and second nodes in between which destructive quantum interference restricts electrical conduction from the first node to the second node in an off-state, a first electrode connected to the first node and configured to supply charge carriers to the first node, a second electrode connected to the second node and configured to remove the charge carriers from the second node, and a control element configured to reduce coherence in or alter charge transport paths between the first and second nodes so as to reduce existing destructive quantum interference and permit flow of the charge carriers from the first node to the second node. The method applies an electric potential between the first and second electrodes, controls coherence in charge transport paths between the first and second nodes so as to maintain or reduce destructive interference between the first and second nodes of the molecule, and injects charge carriers from the first electrode into the first node and collects the charge carriers from the second node at the second electrode when the coherence is controlled to reduce destructive interference.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Membrane contactor comprising a composite membrane of a porous layer and a non-porous selective polymer layer for co2 separation from a mixed gaseous feed stream

A membrane contactor system for separating CO2 from a mixed gaseous feed stream comprising CO2, said contactor system comprising: (i) a composite membrane, said membrane having a permeate side and a retentate side; (ii) said retentate side being exposed to a mixed gaseous feed stream comprising carbon dioxide; (iii) said permeate side being exposed to a carbon dioxide capture organic solvent; (iv) said composite membrane comprising a porous layer and a non-porous selective polymer layer, said non-porous selective polymer layer selectively allowing transport of CO2 across the composite membrane from said mixed gaseous feed stream so that it dissolves in said capture solvent whilst limiting the transport of said capture solvent across the composite membrane.
Owner:NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products