Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

65results about How to "Improve charge transfer efficiency" patented technology

Friction nanometer power generator for converting mechanical energy to electric energy and fabrication method of friction nanometer power generator

ActiveCN109412456ASolve the problem of not being able to make nanofibersSolve the problem that most fluorine-containing materials, except polyvinylidene fluoride, cannot be directly prepared into nanofibers by electrospinningFriction generatorsFiberElectricity
The invention relates to a friction nanometer power generator for converting mechanical energy to electric energy and a fabrication method of the friction nanometer power generator. The fabrication method comprises the steps of packaging a flexible substrate layer I, an electrode material layer I, an electrical negative friction layer, an electrical positive friction layer, an electrode material layer II and a flexible substrate layer II according to a sequence, and then connecting the two flexible substrate layer at the outmost layer so that the electrical negative friction layer and the electrical positive friction layer are arranged at intervals to fabricate the friction nanometer power generator, wherein the electrical negative friction layer is fabricated by automatically assembly a friction electrical negative substance on a surface of aerogel. The fabricated friction nanometer power generator for converting the mechanical energy to the electric energy comprises the electrical negative friction layer and the electrical positive friction layer, and the electrical negative frication layer mainly comprises nanometer fiber of the self-assembled friction electrical negative substance. The fabrication method is simple, the fabricated product is low in cost, the sensitivity on mechanical energy of tiny biology is high, the electrical output performance is excellent, and the frication nanometer power generator has favorable application prospect in the field of self power supply sensing and wearability.
Owner:DONGHUA UNIV

Pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material as well as preparation method and application thereof

The invention relates to a pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material as well as a preparation method and application thereof. The nano composite material is in apine needle shape and is composed of copper hydroxide nanorods and nickel-cobalt-copper basic carbonate nanoneedles arranged on the copper hydroxide nanorods, wherein the nickel-cobalt-copper basic carbonate is a mixture of copper-nickel basic carbonate and copper-cobalt basic carbonate. The preparation method comprises the following steps of carrying out chemical etching on a foam copper sheet togrow a copper hydroxide nanorod, and then growing a nickel-cobalt-copper basic carbonate nanoneedle on the copper hydroxide nanorod through hydrothermal reaction to obtain the pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material. The nano composite material is excellent in electrochemical performance, relatively higher in area specific volume and good in rate capability, is excellent in electrochemical performance when being used for an asymmetric supercapacitor, and has the ultra-long service life, the preparation method is simple, the raw materials are easy to obtain, and the cost is low.
Owner:WUHAN UNIV OF TECH

Composite negative electrode material and secondary battery thereof

Embodiments of the present invention provide a composite negative electrode material, which comprises a three-dimensional nitrogen-doped carbon skeleton and a tin-based active substance loading substance, wherein the tin-based active substance loading substance is distributed on the three-dimensional nitrogen-doped carbon skeleton surface. The embodiments of the present invention further provide a preparation method of the composite negative electrode material, a lithium ion secondary battery negative electrode sheet containing the composite negative electrode material, and a lithium ion secondary battery containing a lithium ion secondary battery negative electrode active material.
Owner:HUAWEI TECH CO LTD +1

Image sensor with improved charge transfer efficiency and method for fabricating the same

An image sensor includes: a first impurity region of the first conductive type aligned with one side of the gate structure and extending to a first depth from a surface portion of the semiconductor layer; a first spacer formed on each sidewall of the gate structure; a second impurity region of the first conductive type, aligned with the first spacer and extending to a second depth that is larger than the first depth from the surface portion of the semiconductor layer; a second spacer formed on each sidewall of the first spacer; a third impurity region of the first conductive type aligned with the second spacer and extending to a third depth that is larger than the second depth from the surface portion of the semiconductor layer; and a fourth impurity region of a second conductive type beneath the third impurity region.
Owner:INTELLECTUAL VENTURES II

OMC-based composite electrode and lead-acid battery

The present invention provides an OMC (Ordered Mesoporous Carbon)-based composite electrode and a lead-acid battery. The OMC-based composite electrode comprises a negative plate grid and lead plasterof an OMC / sponge Pb composite structure material, wherein the lead plaster of the OMC / sponge Pb composite structure material coats the negative plate grid, and the OMC-based composite negative electrode is prepared after solidification and drying. The OMC-based composite negative electrode is prepared by coating lead plaster of the OMC / sponge Pb composite structure material on the negative plate grid for curing and drying. The OMC-based composite electrode and the lead-acid battery are favorable for improving the specific capacity and the service life of the lead-acid battery. The technology of the traditional lead-acid battery negative electrode and the technology of the super capacitor are fused, so that the energy advantage of the battery characteristic is achieved, and the instant power high-capacity charging characteristic of the double electric layer capacitor is achieved, so that the specific capacity and the service life of the traditional lead-acid battery are improved.
Owner:ZHAOQING LEOCH BATTERY TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products