Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1131 results about "Voltage boosting" patented technology

Boosting the 12-volt battery to higher voltages is common in automotive audio power amplifier applications. The controllers can boost the battery voltage up to 48V or whatever voltage is needed to support the wattage level of the audio power amplifiers. It is very common for the audio amplifier to be 100-800 watts.

Boost type active interlaced parallel soft switch circuit

This invention relates to a voltage-boosting type active staggered parallel-connection soft switching circuit. It comprises: two phase coupled inductors, two follows current diodes, two power switching tubes. The drain electrode of the first power switching tube, the positive pole of the second diode and one end of the second inductor are connected. The drain electrode of the second power switching tube, the positive pole of the fist diode and one end of the first inductor are connected. The other end of the first inductor and second inductor are connected. The first power switching tube is paralllet connected with a series circuit composed of the first capacitor and the first auxiliary switching tube; while the second power switching tube is parallel connected with a series circuit composed of the second capacitor and the second auxiliary switching tube. Advantages are: less auxiliary devices, simple structure, no need of additional testing.
Owner:ZHEJIANG UNIV

Voltage boosting circuit and method

A voltage boosting circuit, boosting power supply unit and methods thereof are provided. A boosting power supply unit includes a boosting circuit having a small number of externally-mounted capacitors, which generates stepped-up and stepped-down boosted voltages through charging and pumping under two-phase control, so that the simultaneous output of the stepped-up voltage and the stepped-down voltage, the output of only the stepped-up voltage, the output of only the stepped-down voltage, and the cut-off of the output of the stepped-up voltage and the stepped-down voltage can be controlled on the basis of the phase control signal generated from the enable signals of which the logic states are changed in accordance with an amount of load.
Owner:SAMSUNG ELECTRONICS CO LTD

Charge-pump-type power supply circuit

Two charge pump circuits are connected in a cascade manner. Each of the charge pump circuits includes two charging switches and two voltage-boosting switches. A voltage-boosting switch, provided on a side for adding a boosting voltage to a charging voltage in a second-stage charge pump circuit, includes a plurality of switches. One ends of the switches are commonly connected to a capacitor. Different boosting voltages are applied to other ends of the switches. A selecting unit selects one of the switches, during a boosting period, based on an input voltage or an output voltage to or from a first-stage charge pump circuit.
Owner:RENESAS TECH CORP

Vehicle-mounted charging system of electric vehicle

The invention relates to a vehicle-mounted charging system of an electric vehicle, comprising a vehicle-mounted battery, a single / three-phase power conversion module, a direct current charging device, a charging contactor, a signal detection unit and a micro control unit (MCU), wherein the single / three-phase power conversion module, the direct current charging device, the charging contactor, the signal detection unit and the MCU are respectively connected with the vehicle-mounted battery; the direct current charging device comprises a voltage boosting module and a voltage reduction module which can charge the vehicle-mounted battery through boosting or reducing the voltage of an external direct current charging power supply; and the single / three-phase power conversion module directly multiplexes a vehicle-mounted inverter of the electric vehicle with an alternating / direct current bidirectional inversion function. In the invention, three charging modes of the electric vehicle are integrated in one vehicle-mounted charging system and are flexible and selectable, the vehicle-mounted charging system can be charged by three different charging voltages, i.e. external direct current voltage, single-phase alternating current voltage and three-phase alternating current voltage, and four alternating current charging modes can meet the diversity requirement of the charging modes of current electric vehicles; and meanwhile, the original vehicle-mounted inverter components can be multiplexed, thereby effectively reducing the cost.
Owner:TEN PAO ELECTRONICS HUIZHOU

Adjustable non-dissipative voltage boosting snubber network

This disclosure describes a non-dissipative snubber circuit configured to boost a voltage applied to a load after the load's impedance rises rapidly. The voltage boost can thereby cause more rapid current ramping after a decrease in power delivery to the load which results from the load impedance rise. In particular, the snubber can comprise a combination of a unidirectional switch, a voltage multiplier, and a current limiter. In some cases, these components can be a diode, voltage doubler, and an inductor, respectively.
Owner:AES GLOBAL HLDG PTE LTD

Phase-change semiconductor memory device and method of programming the same

In one aspect, a semiconductor memory device includes a plurality of phase-change memory cells which are programmed according to a write current applied to the phase-change memory cells, a voltage boosting circuit which receives a first voltage and outputs a boosted voltage which is greater than the first voltage, and a write driver which receives the boosted voltage and which generates the write current from the boosted voltage. In another aspect, the write driver generates the write current corresponding to one of a set current pulse and a reset current pulse, and at least one of the set current pulse and the reset current pulse is gradually increased.
Owner:SAMSUNG ELECTRONICS CO LTD

Electric motor drive device, control method of electric motor drive device, and electrically driven device

An electric motor drive device has an inverter adjusting the voltage applied to an AC electric motor so as to drive the AC electric motor, a capacitor which is charged by a current supplied from a DC power supply supplying DC voltage between a neutral point at which a plurality of coils of the AC electric motor are connected and a positive rail or negative rail of an inverter and passing through the inverter, and a control circuit controlling the inverter so that the AC electric motor turns at a designated speed. Further, the control circuit selectively uses field weakening control and voltage boosting control for control of the inverter according to the conditions of the induced voltage generated at the AC electric motor, DC power supply, and voltage of the capacitor.
Owner:DENSO CORP

High frequency switch circuit

A high-frequency switch circuit has a plurality of high-frequency switches for passing and blocking a high-frequency signal between an input terminal and an output terminal depending on a control potential applied as a control signal, a high-frequency detecting terminal for detecting high-frequency signal passing through the high-frequency switch which is in ON-state, and a voltage boosting circuit for generating a potential for increasing the control potential applied to the high-frequency switch which is in ON-state in order to increase difference between the control potential applied to the high-frequency switch which is in an ON-state and the control potential applied to the high-frequency switch which is in an OFF-state, depending on an intensity or amplitude of the detected high-frequency signal.
Owner:NEC CORP

Compound battery device having lithium battery and lead-acid battery

A compound battery device having a lithium battery and a lead-acid battery includes at least one lithium battery unit, at least one lead-acid battery unit and a control circuit. The lithium and lead-acid battery units are electrically connected in parallel and can have various combinations to meet actual demands of an output voltage. The control circuit is electrically connected to the lithium and lead-acid battery units separately and further comprises a voltage-boosting unit, a voltage-detecting unit, a lithium battery unit management unit and a logic control unit. Thereby, two complementary battery units are connected in parallel, with a control circuit to adjust a voltage thereof, allowing the two battery units to work together to make use of their respective advantages while providing mutual power support. Thus, the compound battery device is capable of more efficient power supply and higher loading, and effectively prevents over-discharge that shortens the battery service life.
Owner:RUBICON & TECH

Adjustable non-dissipative voltage boosting snubber network for achieving large boost voltages

This disclosure describes a non-dissipative snubber circuit configured to boost a voltage applied to a load after the load's impedance rises rapidly. The voltage boost can thereby cause more rapid current ramping after a decrease in power delivery to the load which results from the load impedance rise. In particular, the snubber can comprise a combination of a unidirectional switch, a voltage multiplier, and a current limiter. In some cases, these components can be a diode, voltage doubler, and an inductor, respectively.
Owner:AES GLOBAL HLDG PTE LTD

Embedded energy storage type multi-module series-connected photovoltaic DC (direct current) boost converter and application method

ActiveCN106787707AInput power real-time equalizationEliminate impacts from normal operationBatteries circuit arrangementsDc-dc conversionLow voltageFull bridge
The invention provides an embedded energy storage type multi-module series-connected photovoltaic DC (direct current) boost converter and an application method. The embedded energy storage type multi-module series-connected photovoltaic DC boost converter comprises multiple photovoltaic DC boost converter submodules which are connected in series sequentially, wherein each photovoltaic DC boost converter submodule comprises a hybrid energy storage module, an isolated type full-bridge DC-DC circuit, a two-way boost / buck converter and a photovoltaic array, the hybrid energy storage module is used for balancing power output by the photovoltaic DC boost converter submodule, the isolated type full-bridge DC-DC circuit is used for realizing voltage boosting and maximum power point tracking, and the two-way boost / buck converter is used for controlling output power of the hybrid energy storage module. The system can eliminate influence of input power mismatch on normal operation of the photovoltaic DC boost converter fundamentally, a low-voltage DC bus is not needed, meanwhile, reliability of the system is enhanced, and internal fault isolation is convenient; a header box is not required to be arranged, the system is convenient to maintain, and overall control response speed under the special condition of a power station is increased.
Owner:SHANGHAI JIAO TONG UNIV

Electrotransport delivery device with voltage boosting circuit

An electrotransport device (10) for delivering therapeutic agents includes and adjustable voltage boost multiple controller (100, 200) for boosting the voltage from a power source (102, 202) to a working voltage VW having a value just sufficient to provide the desired therapeutic current level II through the electrodes (108, 112), at least of which contains the therapeutic agent to be delivered.
Owner:ALZA CORP

Word line voltage boosting circuit and a memory array incorporating same

A first embodiment of a word line voltage boosting circuit for use with an array of non-volatile memory cells has a capacitor, having two ends, connected to the word line. One end of the capacitor is electrically connected to the word line. The other end of the capacitor is electrically connected to a first voltage source. The word line is also connected through a switch to a second source voltage source. A sequencing circuit activates the switch such that the word line is connected to the second voltage source, and the other end of the capacitor is not connected to the first voltage source. Then the sequencing circuit causes the switch to disconnect the word line from the second voltage source, and connect the second end of the capacitor to the first voltage source. The alternate switching of the connection boosts the voltage on the word line. In a second embodiment, a first word line is electrically connected to a first switch to a first voltage source. An adjacent word line, capacitively coupled to the first word line, is electrically connected to a second switch to a second voltage source. A sequencing circuit activates the first switch and the second switch such that the first word line is connected to the first voltage source, and the second word line is disconnected from the second voltage source. Then the sequencing circuit causes the first switch to disconnect the first word line from the first voltage source, and causes the second word line to be electrically connected to the second voltage source. The alternate switching of the connection boosts the voltage on the first word line, caused by its capacitive coupling to the second word line. A boosted voltage on the word line may be used to improve cycling and yield, where the memory cells of the array are of the floating gate type and erase through the mechanism of Fowler-Nordheim tunneling from the floating gate to a control gate which is connected to the word line.
Owner:SILICON STORAGE TECHNOLOGY

Systems and methods for power amplifiers with voltage boosting multi-primary transformers

Systems and methods may be provided for a power amplifier system. The systems and methods may include a plurality of power amplifiers, where each power amplifier includes at least one output port. The systems and methods may also include a plurality of primary windings each having a first number of turns, where each primary winding is connected to at least one output port of the plurality of power amplifiers, and a single secondary winding inductively coupled to the plurality of primary windings, where the secondary winding includes a second number of turns greater than the first number of turns.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD +1

Method for enhancing non-uniform variation grid width of light load efficiency of integrated switch DC-DC converter

The invention discloses a method for enhancing the non-uniform variation grid width of the light load efficiency of an integrated switch DC-DC converter, a Buck-Boost converter in the invention adopts the design of a CSMC 0.5mu m CMOS process library, whole-circuit integration is realized except for a passive filter, the external filter inductance is 2.2mu H, and the filter capacitance is 1mu F. According to the requirements of input voltage and output voltage, the converter can work in three modes: Buck (voltage reducing), Buck-Boost (voltage reducing and boosting) and Boost (voltage boosting), the range of the input voltage is 2.5V-4.2V, the range of the output voltage is 1.5V-5V, and the working frequency is 5MHz. A non-uniform grid width modulation method is adopted in the whole load current range of 10mA-650mA. When the converter works at high frequency of 5MHz, the efficiencies of medium load and heavy load keep above 90 percent all the time, and the efficiency of light load (10mA) can reach above 80 percent. As the grid width of a switching tube is only changed and a control link of the working efficiency of an extra switching tube is not adopted, negative effects caused by frequency conversion control are eliminated fundamentally.
Owner:陕西北斗恒星科技发展有限公司

Energy management system of externally charging typed hybrid power vehicle

The invention discloses an energy management system of an external charging-type hybrid power vehicle. The energy management system comprises a battery part, a battery charging and discharging and voltage regulating circuit and a signal acquisition and control part. The battery part comprises a lithium power battery pack 11, a voltage monitoring circuit 12 of each unit of the battery and a current detection and cut-off circuit 13 of the battery pack; the battery charging and discharging and voltage regulating circuit comprises an input contactor or an input breaker 21, a charging resistor 23, a short-circuit contactor 22, a voltage boosting reactor 24, a charging control switch IGBT 25, a voltage boosting control switch IGBT 26 and an output contactor 27; and the signal acquisition and control part comprises a main control unit 40, a voltage sensor 41, an output terminal voltage sensor 42, a direct current bus charging indicating circuit 43 and an output current sensor 44. The energy management system enlarges the distance of electric running, reduces idle speed, saves energy, reduces emission, strengthens the dynamic and fuel economic properties of vehicles, reduces the needs of the charging and the discharging with high multiplying power to a lithium battery and has high reliability and very low cost.
Owner:刘云海 +2

Voltage booster for semiconductor device and semiconductor memory device using same

A semiconductor device has a power-saving mode and a normal mode. A voltage booster within the semiconductor device responds to the normal mode and the power-saving mode by controlling various internal operating voltages of the semiconductor device using a level shifter, an internal voltage booster, and a voltage boosting circuit. The initial voltage booster is configured to transmit an external power supply voltage through an initial boosting node to a voltage boosting terminal in response to the level shifter output signal during the normal mode, and to block transmission of the external power supply voltage to the initial boosting node to decrease a voltage level of the initial boosting node during the power-saving mode.
Owner:SAMSUNG ELECTRONICS CO LTD

Control apparatus for electric vehicles

In an electric vehicle having a plurality of MG units each including an AC motor and an inverter, a control apparatus executes system voltage stabilization control to suppress variations in a system voltage by adjusting an input power of a first MG unit or a second MG unit so as to reduce the difference between a target value and detected value of the system voltage. In execution of this control, either one or both of the MG units is selected by a selector by using information on the first MG unit and the second MG unit. The system voltage stabilization control is executed on the selected MG unit. Alternatively, the control apparatus may execute the system voltage stabilization control by selecting a voltage boosting converter.
Owner:DENSO CORP

DC/DC converter

Voltage-boosting / lowering DC / DC converter includes a low-voltage-side port and high-voltage-side port, an inductor connected at one end to a positive-pole terminal of the low-voltage-side port, and a transformer of a magnetic-field cancellation type including a primary winding and secondary winding interconnected in an oppositely-wound configuration, a common terminal of the primary winding and secondary winding being connected to the end of the inductor. Switching element controls an energizing current of the primary winding flowing to a common reference terminal, another switching element controls an energizing current of the primary winding flowing to a positive-pole terminal of the high-voltage-side port, still another switching controls an energizing current of the secondary winding flowing to the common reference terminal, and still another switching element controls an energizing current of the secondary winding flowing to the positive-pole terminal of the high-voltage-side port.
Owner:HONDA MOTOR CO LTD

Voltage buck-boost switching regulator

ActiveUS20100148740A1Stable and high-speed and high-efficiency constant-voltage output operationStable, high-speed, high-efficiency constant-voltage output operationDc-dc conversionElectric variable regulationCapacitanceEngineering
A stable, high-speed, high-efficiency constant voltage is provided without a complicated, large-scale, high-cost phase compensation circuit over a wide range of operating conditions. This voltage buck-boost switching regulator consists of a pair of voltage reducing transistors, a pair of voltage boosting transistors, inductance coil, output capacitor and controller. The controller has the following parts for performing PWM control of constant voltage for voltage reducing transistors and voltage boosting transistors: an output voltage feedback circuit, an inductor current sense circuit, a variable sawtooth wave signal generator, switching controllers, and a voltage boosting driver.
Owner:TEXAS INSTR INC

Energy recovering circuit with boosting voltage-up and energy efficient method using the same

There is disclosed an energy recovering circuit with boosting voltage-up and an energy efficient method using the same that are capable of boosting the voltage factor of an energy recovered from the panel to rapidly re-appl it to the panel, to thereby reduce the charging time of a panel capacitor and improve its energy recovery efficiency. An energy recovering circuit according to the present invention includes a voltage boosting circuit for boosting a voltage factor of an energy recovered from a panel and supplying the boosted energy to the panel. An energy efficient method according to the present invention includes steps of recovering an energy from a panel to a closed loop; and a controlling the closed loop in order to supplying the energy with its voltage factor boosted to the panel.
Owner:LG ELECTRONICS INC

Voltage boosting type device and method of consecutive correcting power factor in average electric current control mode

Using resetable integrator carries out integral conformity calculation for voltage signal of output difference of voltage error amplifier, and input current signal obtained from sensor respectively. Then, using comparison operation controls work cycle of switch to make input current and input voltage in AC / DC power converter in proportion and in same phase. Comparing with traditional PFC circuit, the disclosed control mode uses fewer parts and is simpler. The disclosed device is easier to be integrated to packaging body with fewer pins as well as can obtain high power factor and low total harmonic distortion.
Owner:NIKO SEMICON

Power supply voltage booster

InactiveUS20090015223A1Avoiding inadequacy of a step-up capability during operationShorten the time intervalElectrical controlDc-dc conversionCharge currentCharge control
A power supply voltage booster avoids inadequate step-up capability. In a voltage boosting circuit, a switching device connects and disconnects between the ground potential and one end of the coil, the other end of which is supplied with a supply voltage VB. The switching device is repeatedly turned ON and OFF such that the capacitor is electrically charged from the force in the coil when the switching device is turned off. A charging control circuit turns off the switching device when current flowing through the switching device into the coil is determined to have increased to a switch-off threshold value when the switching device is ON, and turns on the switching device upon determining that the charging current flowing to the capacitor from the coil decreases to a switch-on threshold value when the switching device is OFF. The charging control circuit sets the switch-off threshold value to a larger value as the supply voltage VB is lower. Thus, inadequacy of the step-up capability caused by a drop in the supply voltage VB can be avoided.
Owner:DENSO CORP

Double-fed wind generation set high-voltage penetration method capable of realizing inactive support

InactiveCN103178543AReactive current command optimizationActive current command optimizationSingle network parallel feeding arrangementsInformation technology support systemElectricityPower factor
The invention discloses a double-fed wind generation set high-voltage penetration method capable of realizing inactive support. The method includes detecting grid-connected point-line voltage UT, and direct-current bus voltage Vdc in real time; when grid-connected point-line voltage UT is smaller than 1.1 times of nominal value, controlling a grid-side converter to work at a unit power factor mode and a rotor-side converter to work at a highest power track mode through an upper computer; when the grid-connected point-line voltage UT is not smaller than 1.1 times of nominal value, controlling the grid-side converter to work at a bus voltage control model and the grid-side converter to work at an inactive power support mode; by a self-adaptation direct-current unloading circuit, judging self on and off according to the size of Vdc. By dynamic inactive current instruction optimization of the grid-side converter and the rotor-side converter and real-time protection of the self-adaptation direct-current unloading circuit, grid-connected operation of a double-fed wind generation set during voltage boosting of a power grid is guaranteed, certain dynamic inactive support is provided for fault power grid, fast restoration of the fault power grid is facilitated, and safe and reliable operation of other grid-connected loads is guaranteed.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products