Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

107 results about "Vimentin" patented technology

Vimentin is a structural protein that in humans is encoded by the VIM gene. Its name comes from the Latin vimentum which refers to an array of flexible rods. Vimentin is a type III intermediate filament (IF) protein that is expressed in mesenchymal cells. IF proteins are found in all animal cells as well as bacteria. IF, along with tubulin-based microtubules and actin-based microfilaments, comprises the cytoskeleton. All IF proteins are expressed in a highly developmentally-regulated fashion; vimentin is the major cytoskeletal component of mesenchymal cells. Because of this, vimentin is often used as a marker of mesenchymally-derived cells or cells undergoing an epithelial-to-mesenchymal transition (EMT) during both normal development and metastatic progression.

Separation, purification and identification methods of human amnion mesenchymal stem cells

The invention discloses separation, purification and identification methods of human amnion mesenchymal stem cells. The separation method of hAMSCs (human amnion mesenchymal stem cells) comprises the following steps: fragmentating human amnion; and carrying out two-step rotating digestion with trypsin of EDTA (ethylene diamine tetra-acetic acid) and collagenase of DNaseI, filtering with a steel mesh and collecting cell filtrate namely separated original hAMSCs. The purification method of hAMSCs comprises the following steps: incubating original hAMSCs with an LG (low glucose)-DMEM (dulbecco modified eagle medium) culture medium in a CO2 incubator; removing amnion epithelial cells which do not perform complete adherence growth under an inverted microscope; replacing a new culture medium on the third day; digesting with a trypsin-EDTA solution after cell converge degree reaches 80-90%; and collecting cells so as to obtain high-purity hAMSCs. The identification method of hAMSCs comprises the following steps: identifying hAMSCs and the amnion epithelial cells by adopting immunocytochemical staining vimentin and CK19; and detecting expressions of CD29, CD44, CD166, CD34 and CD45 by adopting a flow cytometry. The separation and purification methods disclosed by the invention have the advantages of high yield, high activity and high purity of hAMSCs; and the identification method is simple, convenient and precise.
Owner:AFFILIATED HOSPITAL OF ZUNYI MEDICAL COLLEGE

Idiopathic pulmonary fibrosis urine protein marker, and application of same to diagnosis and prognosis

The invention relates to an idiopathic pulmonary fibrosis urine protein marker, and application of the same to diagnosis and prognosis. Specifically, the invention relates to application of a urine protein marker obtained by using an idiopathic pulmonary fibrosis model and mass spectrometry to early-stage diagnosis, pathogenesis monitoring and curative effect assessment of human pulmonary fibrosis. The urine protein marker comprises collagen alpha-1(I) chain, vimentin, protein RUFY3, keratin type-II skeleton 8, a sodium-hydrogen exchange regulation factor NHE-RF2, a threonine synthase sample 2, zinc-actin binding repeat protein 2, low-density lipoprotein receptor-associated protein 4, alpha-11 of a guanine nucleotide binding protein subunit, an alpha-1 chain of tropomyosin, mitochondrial stress-70 protein, NSFL1 cofactor P47, ubiquitin carboxyl-terminal hydrolase isozyme L1, etc.
Owner:BEIJING NORMAL UNIVERSITY

Tumor angiogenesis associated genes and a method for their identification

Methods of identifying specific target molecules for design of anti-angiogenic and vascular targeting approaches are disclosed. Transcriptional profiles of tumor endothelial cells were compared with that of normal resting endothelial cells, normal but angiogenically activated placental endothelial cells, and cultured endothelial cells. Although the majority of transcripts were classified as general angiogenesis markers, 17 genes were identified that show specific overexpression in tumor endothelium. Antibody targeting of four cell-surface expressed or secreted products (vimentin, CD59, HMGB1 and IGFBP7) inhibited angiogenesis in vitro and in vivo. Finally, targeting endothelial vimentin in a mouse tumor model significantly inhibited tumor growth and reduced microvessel density. The results demonstrate the utility of the identification and subsequent targeting of specific tumor endothelial markers for anticancer therapy.
Owner:MAASTRICHT UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products