Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3731 results about "Pyridyne" patented technology

Pyridyne in chemistry is the pyridine analogue of benzyne. This reactive intermediate is of some importance to scientific research. Pyridynes are the class of compounds sharing the pyridyne building motif. Two isomers exist, the 2,3-pyridine (2,3-didehydropyridine) and the 3,4-pyridyne (3,4-didehydropyridine). The reaction of 3-bromo-4-chloropyridine with furan and lithium amalgam gives 1,4-epoxy-dihydroquinoline through the 2,3-pyridyne intermediate. The reaction of 4-bromopyridine with sodium in liquid ammonia gives both 3-aminopyridine and 4-aminopyridine through the 3,4-pyridyne intermediate and an E1cB-elimination reaction.

Industrial process for the synthesis of 17a-acetoxy-11ss-[4-(n,n-dimethyl-amino)- phenyl]-19-norpregna-4,9-diene-3,20-dione and new intermediates of the process

The present invention relates to a new industrial process for the synthesis of solvate- free 17a-acetoxy-11ss-[4-(N,N-dimethyl-amino)-phenyl]-19-norpregna-4,9-diene-3,20-dione [CDB -2914] of formula (I) which is a strong antiprogestogene and antiglucocorticoid agent. The invention also relates to compounds of formula (VII) and (VIII) used as intermediates in the process. The process according to the invention is the following: i) 3-(ethylene-dioxy)-estra-5(10),9(11)-diene-17-one of formula (X) is reacted with potassium acetilyde formed in situ in dry tetrahydrofuran by known method, ii) the obtained 3-(ethylene-dioxy)-17a-ethynyl-17ss-hydroxy-estra-5(10),9(11)-diene of formula (IX) is reacted with phenylsulfenyl chloride in dichloromethane in the presence of triethylamine and acetic acid, iii) the obtained isomeric mixture of 3-(ethylene-dioxy)-21-(phenyl-sulfinyl)-19-norpregna-5(10),9(11),17(20),20-tetraene of formula (VIII) is reacted first with sodium methoxide in methanol, then with trimethyl phosphite, iv) the obtained 3-(ethylene-dioxy)-17a-hydroxy-20-methoxy-19-norpregna-5(10),9(11),20-triene of formula (VII) is reacted with hydrogen chloride in methanol, then v) the obtained 3-(ethylene-dioxy)-17a-hydroxy-19-norpregna-5(10),9(11l); -diene-20- one of formula (VI) is reacted with ethylene glycol hi dichloromethane in the presence of trimethyl orthoformate and p-toluenesulfonic acid by known method, vi) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-19-norpregna- 5(10),9(11)-diene of formula (V) is reacted with hydrogen peroxide in a mixture of pyridine and dichloromethane in the presence of hexachloroacetone by known method, vii) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-5,10-epoxy-19-norpregn-9(11)-ene of formula (IV), containing approximately a 1:1 mixture of 5a,10a- and 5ss,10ss-epoxides, is isolated from the solution and reacted with a Grignard reagent obtained from 4-bromo-N,N-dimethyl-aniline in tetrahydrofuran.
Owner:RICHTER GEDEON NYRT

Fused amino pyridine as hsp90 inhibitors

The present invention relates to HSP90 inhibitors containing fused amino pyridine core that are useful as inhibitors of HSP90 and their use in the treatment of HSP90 related diseases and disorders such as cancer, an autoimmune disease, or a neurodegenerative disease.
Owner:CURIS INC

Fused bicyclic amide compounds and medicinal use thereof

Compounds represented by the following general formula (I) wherein ring A is benzene, cyclohexane, pyridine, piperidine, a derivative thereof, imidazole, a derivative thereof, etc.; the ring B represents benzene, cyclohexane, pyrrole or a derivative thereof, furan, thiophene, etc.; R1, R2 and R3 represent each hydrogen, alkyl, halogen, hydroxyl, alkoxy, etc.; W represents hydrogen, alkyl or hydroxycarbonylalkyl; X represents halogen, cyano, nitro, etc.; X′ represents hydrogen, halogen, etc.; and Y represents alkyl, hydroxyalkyl, hydroxycarbonylalkyl, aminoalkyl, etc.; salt thereof, and drugs comprising these compounds. Because of having an exellent effect of inhibiting activated lymphocyte proliferation, these compounds are usefull as preventives or remedies for various autoimmune diseases.
Owner:MITSUBISHI TANABE PHARMA CORP

Preparation method and application of iron-nitrogen co-doped porous carbon sphere material

The invention discloses a preparation method for an iron-nitrogen co-doped porous carbon sphere material. The preparation method comprises the following steps: by taking 2-aminopyridine as a monomer and taking ammonium persulfate and ferric chloride as oxidants, performing in-situ polymerization reaction in a duct of a porous silicon dioxide template to obtain a precursor; performing high-temperature carbonization treatment on the precursor in a tubular furnace and an inert gas nitrogen-gas environment; and removing the silicon dioxide template by hydrofluoric acid to obtain the iron-nitrogen co-doped porous carbon sphere material which is taken as an electric catalyst to achieve good catalytic effect in oxygen gas reduction reaction. The preparation method has the advantages that the process is simple and easy to perform and the raw materials are cheap. The prepared carbon material contains a three-dimensional communicated pore structure, has a high specific surface area and a large pore volume, can effectively improve the electric catalytic activity through the heteroatom nitrogen-iron doping, has relatively high electric catalytic efficiency while being applied as a low-price electric catalyst, and has an important value and significance in the fields of doped type porous carbon material preparation and proton membrane fuel battery electric catalysis.
Owner:NANKAI UNIV

2-aminopyrimidin-4-one and 2-aminopyridine derivatives both having bace1-inhibiting activity

The present invention provides a compound which has an effect of inhibiting amyloid-β production and is useful as a therapeutic agent for diseases induced by production, secretion and / or deposition of amyloid-β proteins. The present invention relates to a compound represented by formula (I) or a pharmaceutically acceptable salt or solvate thereof:wherein A is optionally substituted carbocyclic diyl or optionally substituted heterocyclic diyl; B is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group; R1 is a group such as optionally substituted lower alkyl; R2 is a group such as hydrogen; and R3a and R3b are each independently a group such as hydrogen, provided that the following compound is excluded.
Owner:SHIONOGI & CO LTD

Pyridyl sulfonamides as modulators of ion channels

InactiveUS20090105271A1Lessen severityBiocideNervous disorderIonMedicinal chemistry
The present invention relates to pyridyl sulfonamide derivatives useful as inhibitors of ion channels. The invention also provides pharmaceutically acceptable compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various disorders.
Owner:VERTEX PHARMA INC

Imidazo[4, 5-b]pyridin-2-one and oxazolo[4, 5-b]pyridin-2-one compounds and analogs thereof as cancer therapeutic compounds

InactiveUS20090325945A1Promote apoptosisInhibiting cell cycle progressionBiocideOrganic chemistryDiseaseMelanoma
The present invention pertains to certain imidazo[4,5-b]pyridin-2-one and oxazolo[4,5 b]pyridin-2-one compounds and analogs thereof, which, inter alia, inhibit RAF (e.g., B RAF) activity, inhibit cell proliferation, treat cancer, etc., and more particularly to compounds of the formulae: wherein: J is independently —O— or —NRN1−; RN1, if present, is independently —H or a substituent; RN2 is independently —H or a substituent; Y is independently —CH═ or —N═; Q is independently —(CH2)j-M-(CH2)k— wherein: j is independently 0, 1 or 2; k is independently 0, 1, or 2; j+k is 0, 1, or 2; M is independently O—, —S—, —NH—, —NMe-, or —CH2—; each of RP1, RP2, RP5, and RP4 is independently —H or a substituent; and additionally RP1 and RP2 taken together may be CH═CH—CH═CH—; and additionally RP1 and RP5 taken together may be CH═CH—CH═CH—; L is independently: a linker group formed by a chain of 2, 3, or 4 linker moieties; each linker moiety is independently CH2—, —NRN—, —C(═X)—, or —S(═O)2—; either: exactly one linker moiety is —NRN—, or: exactly two linker moieties are —NRN—; either: exactly one linker moiety is —C(═X)—, and no linker moiety is —S(═O)2—, or: exactly one linker moiety is —S(═O)2—, and no linker moiety is —C(═X)—; no two adjacent linker moieties are —NRN—; X is independently ═O or ═S; each RN is independently —H or a substituent; A is independently: C6-14carboaryl, C5-14heteroaryl, C3-12carbocyclic, C3-12heterocyclic; and is independently unsubstituted or substituted; and pharmaceutically acceptable salts, solvates, amides, esters, ethers, N-oxides, chemically protected forms, and prodrugs thereof. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit RAF (e.g., B-RAF) activity, to inhibit receptor tyrosine kinase (RTK) activity, to inhibit cell proliferation, and in the treatment of diseases and conditions that are ameliorated by the inhibition of RAF, RTK, etc., proliferative conditions such as cancer (e.g., colorectal cancer, melanoma), etc.
Owner:CANCER RES TECH LTD +1

Organometallic complexes as singlet oxygen sensitizers

A series of organometallic complexes and the singlet oxygen sensitization properties of these complexes are provided. Complexes with acetylacetonate ligands give singlet oxygen quantum yields near unity, whether exciting the ligand-based state or the lowest energy excited state (MLCT+3LC). The singlet oxygen quenching rates for these β-diketonate complexes are small, roughly three orders of magnitude slower than the corresponding phosphorescence quenching rate. Similar complexes were prepared with glycine or pyridine tethered to the Ir(III) center (i.e. (bsn)2Ir(gly) and (bt)2Ir(py)Cl, where gly=glycine, and py=pyridine). The glycine and pyridine derivatives give high singlet oxygen yields.
Owner:UNIV OF SOUTHERN CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products