A polarization-selectively blazed, diffractive optical element is provided, comprising a plurality of contiguous blaze structures, which extend along a given geometrical path and each have a width (g1, g2, g3) perpendicular to their direction of extension (R1, R2, R3), said width being greater than the
wavelength (X) of the
electromagnetic radiation for which the diffractive optical element is designed, and each of said blaze structures comprising a plurality of individual substructures, which are arranged next to each other in the direction of extension (R1, R2, R3) according to a predetermined period (sg), said substructures providing the blaze effect and each having the shape, when viewed from above, of a closed geometrical surface whose dimension parallel to the direction of extension (R1, R2, R3) varies perpendicular to the direction of extension (R1, R2, R3), but is always smaller than the
wavelength (X) of the
electromagnetic radiation, and whose
maximum dimension perpendicular to the direction of extension (R1, R2, R3) is greater than the
wavelength (X) of the
electromagnetic radiation, wherein the
filling ratio (f) of the individual substructures in the direction of extension (R1, R2, R3) relative to the period (sg) is selected such, as a function of the position perpendicular to the direction of extension (R1, R2, R3), that the blaze effect is optimized for one of two mutually orthogonal polarization conditions of the electromagnetic
radiation.