Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

310 results about "Glucose dehydrogenase" patented technology

Coenzyme-binding glucose dehydrogenase

The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level. Therefore, it became possible to provide an enzyme having a high utility, such as an ability of being used for modifying a material in the fields of pharmaceuticals, clinical studies and food products.
Owner:PHC CORP

Method for enhancing stability of a composition comprising soluble glucose dehydrogenase (GDH)

The present invention relates to a method for enhancing stability of a composition comprising soluble glucose dehydrogenase (GDH). Soluble GDH is preferably FAD-dependent GDH derived from filamentous fungus, and the best effect is observed in FAD-GDH derived from A. oryzae or FAD-GDH derived from A. terreus. According to the invention, in a composition comprising soluble glucose dehydrogenase (GDH), stability of GDH can be enhanced by coexisting the enzyme with one or more compounds selected from amino acids and sugars which are not substrate of the enzyme, thus expected to enhancing a measurement accuracy of glucose.
Owner:TOYO TOYOBO CO LTD

Method for enhancing stability of a composition comprising soluble glucose dehydrogenase (GDH)

The present invention relates to a method for enhancing stability of a composition comprising soluble glucose dehydrogenase (GDH). Soluble GDH is preferably FAD-dependent GDH derived from filamentous fungus, and the best effect is observed in FAD-GDH derived from A. oryzae or FAD-GDH derived from A. terreus. According to the invention, in a composition comprising soluble glucose dehydrogenase (GDH), stability of GDH can be enhanced by coexisting the enzyme with one or more compounds selected from amino acids and sugars which are not substrate of the enzyme, thus expected to enhancing a measurement accuracy of glucose.
Owner:TOYO TOYOBO CO LTD

Modified pyrroloquinoline quinone (pqq) dependent glucose dehydrogenase excellent in substrate specificity

PQQGDH having an improved substrate specificity or having an improved specific activity in an assay system using ferricyanide ion as a mediator is provided. Modified PQQGDH having the enhanced substrate specificity by introducing an amino acid mutation in a particular region of PQQGDH, and a method of enhancing the specific activity compared with a wild type in the assay system using the ferricyanide ion as the mediator by deleting, substituting, or adding one or more amino acids in an amino acid sequence of the wild type pyrroloquinoline quinone dependent glucose dehydrogenase.
Owner:TOYO TOYOBO CO LTD

Flavin-binding glucose dehydrogenases

ActiveUS20110318810A1Accurate measurementAccurate blood glucose levelSugar derivativesBacteriaMicroorganismLactose
A flavin-binding glucose dehydrogenase with a high substrate specificity for D-glucose. The flavin-binding glucose dehydrogenase which is derived from a microorganism belonging to the genus Mucor. The flavin-binding glucose dehydrogenase has a low reactivity for maltose, D-galactose and D-xylose compared to its reactivity for D-glucose, and therefore is relatively unaffected by these saccharide compounds. The flavin-binding glucose dehydrogenase is also relatively unaffected by dissolved oxygen, and allows accurate measurement of glucose amounts even in the presence of saccharide compounds other than glucose in samples.
Owner:KIKKOMAN CORP

Method for preparing (R)-2-hydroxy-4-phenyl ethyl butyrate by catalyzing with recombinant carbonyl reductase

The invention discloses a method for preparing (R)-2-hydroxy-4-phenyl ethyl butyrate by catalyzing recombinant carbonyl reductase, which belongs to the technical field of biological engineering. The method comprises the following steps of: cloning gene segments of carbonyl reductase (IolS) and glucose dehydrogenase (GDH) from bacillus subtilis CGMCC NO.1.1508, expressing an IolS gene and a GDH gene in series by adopting a dual-starter method to construct a recombinant plasmid pET24a-G-T7-I, and introducing the plasmid into escherichia coli BL21(DE3); and under the condition of not adding or adding a small amount of NADP+cofactors, performing biotransformation by taking a cell-free extract of the escherichia coli recombinant plasmid as a catalyst, 2-oxo-4-phenyl ethyl butyrate as a substrate and glucose as a substrate to obtain (R)-2-hydroxy-4-phenyl ethyl butyrate, wherein the enantiomeric excess value of the product is higher than 99.5 percent. In the method, IolS and GDH are co-expressed, so that efficient regeneration of an intra-cellular cofactor NADP(H) is realized, production cost is lowered, and a good industrial application prospect is achieved.
Owner:JIANGNAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products