Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4974 results about "Fiber layer" patented technology

The retinal nerve fiber layer (RNFL) or nerve fiber layer, stratum opticum, is formed by the expansion of the fibers of the optic nerve; it is thickest near the optic disc, gradually diminishing toward the ora serrata.

Coating selective zones of thin webs to change the pervious character thereof

The process and apparatus of the present invention involves treating a well-integrated woven or non-woven web of hydrophobic fibers to make selected areas hydrophilic. It also can be used to make a web of hydrophilic fibers selectively hydrophobic. It uses a plurality of selectively adjustable covers on an applicator roll rotating in a bath of liquid to place the liquid material on selected areas of the web as the web moves over the roll. In a preferred embodiment the web is non-woven and the fibers are hydrophobic in nature, e.g., dry-laid or melt-blown polypropylene or polyethylene fibers or spun-bonded hydrophobic filaments. A woven web made of cotton or other hydrophilic fibers may also be used if the end result is to create partially hydrophobic areas on a hydrophilic web. The areas of liquid are positioned on the web only where desired so as to eliminate the excessive cost of unwanted and unnecessary coating material. If the web is hydrophobic, the liquid makes that area hydrophilic. If the web is hydrophilic, the liquid makes that area hydrophobic. Enhanced liquid containment and transport is obtained when at least one discontinuous fine fiber layer is utilized in the web and the fine fiber layer has a melt-blown content greater than zero but less than 1.5 gsm.
Owner:AVGOL NONWOVEN INDS

Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure

The present invention provides a compliant balloon for use with a catheter having an inner compliant inner layer defining a cylindrical lumen encased by a fiber layer including non-braided inelastic fibers imparting integrity to the balloon wall. The balloon further includes radiopaque material which may be disposed over substantially the entire length of the balloon as a coating or by incorporation within the fiber layer or an outer coating layer. The balloon is expandable from a folded deflated state to an inflated state by increasing pressure within the balloon and can be used with saline as the sole inflation medium to allow rapid deflation as compared to use of a balloon with a contrast medium.
Owner:VECTOR CORP

Cleaner for inspecting projections, and inspection apparatus and method for integrated circuits

A cleaner of this invention is a cleaner for inspecting projections and removes any substance, e.g., aluminum oxide, which attaches to needle points of probe needles, when the probe needles pierce into the cleaner. The cleaner has a cleaner layer and a substrate. The cleaner layer is constituted by an elastic material layer, and a filler having a surface state improving function of the inspecting projections and dispersed in the elastic material layer. As the filler having a surface state improving function, a powder including at least one of ceramic materials, e.g., sand, glass, alumina, Carborundum (trade name), and the like, or a fiber layer made of an inorganic fiber or organic fiber can be employed.
Owner:TOKYO ELECTRON LTD

White and color photoexcitation light emitting sheet and method for the fabrication thereof

The present invention relates to a white and color photoexcitation light emitting sheet comprising a substrate, a light source formed on the substrate, and a white and color photoexcitation light emitting layer capable of converting a light emitted from the light source into a light having a different wavelength, where the white and color photoexcitation light emitting layer is fabricated by mixing a matrix polymer, white and color photoexcitation light emitting materials and a solvent, spinning the resulting mixture to prepare an ultrafine composite fiber layer of the matrix polymer / photoexcitation light emitting materials, and thermocompressing the ultrafine composite fiber layer; and a method for fabrication thereof. The white and color photoexcitation light emitting sheet according to the present invention has uniform brightness and color coordinates and exhibits high color reproducibility.
Owner:KOREA INST OF SCI & TECH

Polyurethane multilayer composite sheet for automotive headliner and processing method thereof

The invention discloses a polyurethane multilayer composite sheet for an automotive headliner, which has a non-woven fabric layer, a first reinforcing glue film layer, a first reinforcing fiber layer, a first adhesive film layer, polyurethane foam board, a second adhesive film layer, a second reinforcing fiber layer, a reinforcing glue layer and a surface finish layer from bottom to top. The production method of the polyurethane multilayer composite sheet has the characteristics that: the use of the reinforcing glue films as a substitute of hot-melt adhesive powder simplifies production process, improves production efficiency and product quality, radically solves dust pollution in a production process, and improves the working environment of workers. The polyurethane multilayer composite sheets produced by the method can be used for fiber glass-free automotive roofs, biodegradable automotive roofs, light automotive roofs, and other high-quality automotive headliners; the introduction of reinforcing fiber mats in different forms enables the method to produce breathable automobile roofs, high acoustic absorption automotive roofs, high strength automotive roofs and other functional automotive headliners; and the sheet and the method fill a gap of the automotive headliner industry in China.
Owner:陈雅君

Wound dressing

PCT No. PCT / GB96 / 01087 Sec. 371 Date Nov. 14, 1997 Sec. 102(e) Date Nov. 14, 1997 PCT Filed May 8, 1996 PCT Pub. No. WO96 / 36304 PCT Pub. Date Nov. 21, 1996A wound dressing combining a graduated density felt 1 with an absorbent fiber layer 2 in order that the aggressive absorption of the absorbent layer 2 may be regulated to acceptable rates for wound dressing usage and to ensure potentially irritative alginate absorbent fibers are isolated from the wound site. The graduated density felt 1 acts as a regulating or gate layer for the absorbent fiber layer 2 and so limits the rate that exudate from a wound can pass to the absorbent fiber layer 2. Furthermore, the regulating layer 1 effectively spreads the exudate to give a conical transmission profile enhancing wound dressing performance.
Owner:TEXON UK LTD

Multi-Layer, Fluid Transmissive Fiber Structures Containing Nanofibers and a Method of Manufacturing Such Structures

A multi-layer, fluid transmissive structure is provided that comprises first and second fiber layers each comprising a plurality of polymeric fibers bonded to each other at spaced apart contact points. The polymeric fibers of these fiber layers have diameters greater than one micron and collectively define interconnected interstitial spaces providing tortuous fluid flow paths through the first and second fiber layers. The structure also comprises a plurality of nanofibers disposed intermediate at least a portion of the first fiber layer and at least a portion of the second fiber layer.
Owner:POREX TECHNOLOGIES GMBH

Composite filter media with high surface area fibers

The present invention is directed to a high surface area fibers and an improved filter composite media made from the same. More specifically, the composite media preferably comprises a winged-fiber layer having high surface area fibers for increased absorption and strength and a meltblown layer for additional filtration. In one preferred embodiment the high surface area fibers have a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the high surface area fiber has a specific surface area of about 140,000 cm2 / g or higher and a denier of about 1.0 to about 2.0. The high surface area fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
Owner:ALLASSO IND +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products