Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

71results about How to "Loss leveling" patented technology

Control circuit for a switch unit of a clocked power supply circuit, and resonance converter

A control circuit for a switch unit of a clocked power supply circuit, the switch unit being designed to effect input-side excitation of a resonant transformer arrangement, comprises an input for receiving an auxiliary signal from the resonant transformer arrangement. The auxiliary signal exhibits an essentially fixed phase relation to a load alternating current flowing through a resonant circuit of the transformer arrangement. The control circuit further comprises a phase detector designed to detect reference crossing moments when the auxiliary signal crosses a predefined reference value, a driver controllable to switch the switch unit, and a synchronizer designed to synchronize a turn-on of the switch unit by the driver with regard to a phase position with the auxiliary signal so as to achieve a turn-on of the switch unit within a predetermined time interval around a zero crossing of a voltage present across the switch unit, or of a current flowing through the switch unit. The synchronizer is further designed to receive information about the reference crossing moments from the phase detector, and to provide a turn-on signal to the driver with a fixed phase delay at the reference crossing moments, so as to define turn-on moments at which the driver is to turn on the switch unit. The control circuit further comprises a detector designed to determine an amplitude information which depends on an amplitude or a mean value of the auxiliary signal, and a regulator designed to change an operating frequency in dependence on the amplitude information supplied by the detector, and to determine a period duration between turn-off moments at which the driver is to turn off the switch unit as a reciprocal of the operating frequency. An inventive resonance converter enables independent control of frequency and turn-on moments, or duty cycle, and thus enables a particularly efficient operation of the resonance converter, and a particularly precise regulation.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV +1

Cogeneration system

A Stirling engine-equipped cogeneration system is capable of utilizing thermal energy, without waste, and of offering high thermal usage efficiency at every stage of the thermal energy utilization process. The system includes a combustion chamber (11), a burner unit (5) installed to the combustion chamber, the burner unit driving combustion to generates exhaust gas within the combustion chamber, a liquid media jacket (21) that envelopes the combustion chamber, a liquid media flowing within the liquid media jacket and absorbing thermal energy from the burner-generated exhaust gas, a Stirling engine (4) operating from a sealed operating fluid heated by the heater (3) which is located within the combustion chamber facing the burner and subjected to the flow of exhaust gas generated within the combustion chamber, an exhaust gas flow channel (20) through which flows burner-generated exhaust gas after having flowed through and heating the heater, and an exhaust gas passage (22) having an entrance connected to the exhaust gas flow channel as means of allowing the exhaust gas to heat the liquid medium in the liquid media jacket. The exhaust gas generated from the burner-driven combustion flows into the heater to transfer thermal energy thereto, then flows into the exhaust gas passage, through the exhaust gas flow channel to transfer the thermal energy to the liquid medium, thereby heating the liquid medium and heater simultaneously.
Owner:SUGIOKA TETUO

Cogeneration system

A Stirling engine-equipped cogeneration system is capable of utilizing thermal energy, without waste, and of offering high thermal usage efficiency at every stage of the thermal energy utilization process. The system includes a combustion chamber (11), a burner unit (5) installed to the combustion chamber, the burner unit driving combustion to generates exhaust gas within the combustion chamber, a liquid media jacket (21) that envelopes the combustion chamber, a liquid media flowing within the liquid media jacket and absorbing thermal energy from the burner-generated exhaust gas, a Stirling engine (4) operating from a sealed operating fluid heated by the heater (3) which is located within the combustion chamber facing the burner and subjected to the flow of exhaust gas generated within the combustion chamber, an exhaust gas flow channel (20) through which flows burner-generated exhaust gas after having flowed through and heating the heater, and an exhaust gas passage (22) having an entrance connected to the exhaust gas flow channel as means of allowing the exhaust gas to heat the liquid medium in the liquid media jacket. The exhaust gas generated from the burner-driven combustion flows into the heater to transfer thermal energy thereto, then flows into the exhaust gas passage, through the exhaust gas flow channel to transfer the thermal energy to the liquid medium, thereby heating the liquid medium and heater simultaneously.
Owner:SUGIOKA TETUO

Axial bearing arrangement in a hermetic compressor

InactiveUS20070166175A1Reduce mechanical loss and total noise levelGood energy performancePositive displacement pump componentsPiston pumpsMagnetEngineering
A magnetic axial bearing arrangement in a reciprocating hermetic compressor, comprising: a cylinder block (20) and a radial bearing hub (40); a crankshaft (50) securing a rotor (61) of an electric motor (60), said arrangement comprising at least one magnetic axial bearing assembly (100) formed of a pair of magnet elements (101), a magnet element (101) of each pair being mounted to a respective part of at least one of the pairs of parts of crankshaft (50) and cylinder block (20), of cylinder block (20) and rotor (61), or of crankshaft (50) and external bearing (120), the parts of at least one of the pairs of parts carrying respective confronting mechanical stops which are maintained spaced apart by an axial gap (FA) smaller than a magnetic axial gap (FM) higher than zero and to be maintained between the magnet elements (101) of a magnetic axial bearing assembly (100).
Owner:WHIRPOOL SA

Electrical charging arrangement and motor vehicle

ActiveUS20180236884A1High electrical current intensityLow level of lossVehicle connectorsCharging stationsElectrical conductorPower flow
An electrical charging arrangement in a motor vehicle is disclosed having a power coupling element and at least one current conductor. A cooling element is arranged on the rear side of the power coupling element facing the current conductor so that the power coupling element can be cooled from the rear side.
Owner:BENTELER AUTOMOBILTECHNIK GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products