Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

169results about How to "Increase engine speed" patented technology

Differential torque operation for internal combustion engine

A method of operating an internal combustion engine having a plurality of cylinders including at least a first cylinder and a second cylinder, the method comprising firing the first cylinder and the second cylinder in an alternating sequence; during a first mode, adjusting an operating parameter of the engine to produce a first difference between an amount of torque produced by the firing of the first cylinder and an amount of torque produced by the firing of the second cylinder; during a second mode, adjusting the operating parameter of the engine to produce a second difference between an amount of torque produced by the firing of the first cylinder and an amount of torque produced by the firing of the second cylinder; and performing the first mode at a higher engine speed than the second mode; wherein the first difference is greater than the second difference.
Owner:FORD GLOBAL TECH LLC

Motor vehicle comprising a drive train having a multiple clutch drive

The invention relates to measures for controlling or reducing drag torque occurring in a multi-plate clutch device (202) due to temperature-related increased viscosity of an operating fluid which is supplied to the plates in operation. The aim of the invention is to enable a motor vehicle to be started or operated even at low temperatures. According to one aspect of the invention, a motor vehicle comprising a drive train is especially provided. Said drive train comprises a drive unit (238), gearbox (330) having a first gearbox input shaft and a second gearbox input shaft, and a clutch (202) having a first clutch device which is associated with the first gearbox input shaft, and a second clutch device which is associated with the second gearbox input shaft, for transferring torque between the drive unit and the gearbox. Said clutch devices are embodied in the form of plate clutches to which an operating fluid can be supplied, especially a cooling oil in order to operate the same. Said gearbox (330) is associated with an actuator device and a control device (316) for controlling the actuator device, the arrangement of which enables the gears associated with the first and second gearbox input shafts to be engaged and disengaged. According to the invention, the control device (316) is designed in such a way that at least one gear is automatically engaged by means of the actuator device (236), as a result of the clutch release of the vehicle.
Owner:VOLKSWAGEN AG +1

Method and system for regenerating exhaust system filtering and catalyst components using variable high engine idle

A method and system for regenerating particulate filters, catalyzed soot filters, and NOx adsorber catalysts for a vehicle having a compression ignition engine.
Owner:DETROIT DIESEL

Method for auto-ignition combustion control

A method is disclosed for controlling the air-fuel ratio in a four-stroke gasoline direct-injection controlled auto-ignition combustion. The engine is operated with two sequential pairs of expansion and contraction strokes during two revolutions of the engine crank, the two revolutions defining a combustion cycle. A system is employed for variably actuating the intake and exhaust valves and adjusting the flow of air and burned gases entering the combustion chamber. Adjusting the flow affects the resulting air-fuel ratio in the combustion chamber. The valve actuating system is employable to operate the intake and exhaust valves with an exhaust re-compression or an exhaust re-breathing valve strategy. Either valve strategy affects the air-fuel ratio in the cylinder and causes a proportion of burned gases from previous combustion cycles to be retained in the cylinder to provide the necessary conditions for auto-ignition of the air-fuel mixture.
Owner:GM GLOBAL TECH OPERATIONS LLC

Control apparatus and method for lock-up clutch of vehicle

InactiveUS20040229728A1Improve starting and acceleratingIncrease engine speedGearing controlEngine controllersClutch controlControl theory
In a vehicle having a hydraulic power transmitting device equipped with a lock-up clutch on an output side of the engine, a control apparatus for controlling the lock-up clutch is provided which includes a lock-up clutch control unit that places the lock-up clutch in a slipping state when the vehicle is started so that torque received from the engine is transmitted to a later-stage transmission via the lock-up clutch as well as the hydraulic power transmitting device.
Owner:TOYOTA JIDOSHA KK

Intake device of internal combustion engine

A resonator 13 is provided including a resonating body 13 which is vibrated by intake air pulsation in an intake system 5, a volume chamber 14 connected through the resonating body 13 to the intake system 5, and a neck section 16 through which an interior space 15 of the volume chamber 14 is communicated with outside. The interior space 15 of the volume chamber 14 and interior of the intake system 5 are partitioned by the resonating body 13. The resonator is so set that a sound pressure in a certain frequency range is released from the neck section 16 to the outside under vibration of the resonating body 13. With this, the sound pressure characteristics of air intake sound can follow a rise in engine speed.
Owner:MAHLE JAPAN LTD

Intake device of internal combustion engine

A resonator 13 is provided including a resonating body 13 which is vibrated by intake air pulsation in an intake system 5, a volume chamber 14 connected through the resonating body 13 to the intake system 5, and a neck section 16 through which an interior space 15 of the volume chamber 14 is communicated with outside. The interior space 15 of the volume chamber 14 and interior of the intake system 5 are partitioned by the resonating body 13. The resonator is so set that a sound pressure in a certain frequency range is released from the neck section 16 to the outside under vibration of the resonating body 13. With this, the sound pressure characteristics of air intake sound can follow a rise in engine speed.
Owner:MAHLE JAPAN LTD

Cam operating system

A cam system to generate valve actuation in an engine that includes a circular camlobe rotated about a first axis is described. The first axis is a preselected distance from the centerpoint of the circular camlobe. The cam system also includes a cam-follower that surrounds the camlobe and that has an inner oval surface with a major and minor axis. The inner oval surface is in moving contact with the circular camlobe during rotation of the camlobe.
Owner:LINEBARGER TERRY GLYN

Cam operating system

A cam system to generate valve actuation in an engine that includes a circular camlobe rotated about a first axis is described. The first axis is a preselected distance from the centerpoint of the circular camlobe. The cam system also includes a cam-follower that surrounds the camlobe and that has an inner oval surface with a major and minor axis. The inner oval surface is in moving contact with the circular camlobe during rotation of the camlobe.
Owner:LINEBARGER TERRY GLYN

Integrated Controls For A Fire Suppression System

A fire suppression system having a plumbing assembly, an engine, a hose, an air-bleed valve, and a controller is provided. The controller includes a one-touch activation control. The controller is also configured to automatically activate the air-bleed valve to remove air within the hose to prevent user injury and damage to the fire suppression system. A fire suppression system that automatically configures the fire suppression system to output a predetermined fire suppression fluid composition upon actuation of a one-touch activation control is also provided. In addition, an integrated control system is provided to automatically configure a fire truck's interlock and shift pump operation.
Owner:HALE PRODUCTS INC

Engine Control Device

Exhaust emission control is exercised to restrict the exhaust amounts [g] of HC, CO, NOx, and the like. However, since the intake air amount for startup unduly increases due to an engine speed overshoot for startup, the exhaust amounts of HC, CO, and NOx increase excessively. Therefore, there is a need for optimizing the intake air amount for startup. The present invention proposes an engine startup control method that assures excellent startability and low exhaust emissions (small gas amount). Disclosed is an engine control device for starting an engine (from its stop state). The engine control device includes a section for setting a target engine operating state of each combustion; a section for detecting an actual engine operating state of each combustion; and a section for computing a control parameter for each subsequent combustion in accordance with the target engine operating state of each combustion and the actual engine operating state of each combustion.
Owner:HITACHI LTD

Exhaust gas recirculation system for internal combustion engine and method for controlling the same

In an exhaust gas recirculation system for an internal combustion engine, which includes a turbocharger; a high-pressure EGR unit; a low-pressure EGR unit; a high-pressure EGR valve; and a low-pressure EGR valve, first, the opening amount of the high-pressure EGR valve is controlled in a feedback manner, and, then, the opening amount of a low-pressure EGR valve is controlled in a feedback manner in a transitional operation period in which the operation mode of the internal combustion engine is changing. In this way, the intake air amount is promptly adjusted to the target intake air amount without causing hunting.
Owner:TOYOTA JIDOSHA KK

Engine controller and control method

An engine controller controls an engine, which drives a generator, an auxiliary device, and a vehicle. The generator generates electricity, and supplying the electricity to a battery and a plurality of current consumers. A generator controller controls the generator. An auxiliary device controller controls the auxiliary device. An electric power generation calculation unit calculates one of a requested power generation of the generator and a present power generation of the generator. An engine speed changing unit evaluates tendency of power generation on the basis of the one of the requested power generation and the present power generation. The engine speed changing unit requests increase or decreases in the engine speed when the engine speed changing unit determines the power generation to be inclined toward shortage or excess.
Owner:DENSO CORP

Start control for internal combustion engine

In an internal combustion engine, a starter motor is energized in response to a request for an engine start to perform a cranking of the internal combustion engine. Thereafter, an electric variable valve motor is energized to control a valve opening / closing characteristic to a condition designed to promote the cranking. The start of the energization of the electric variable valve motor is delayed from the start of the energization of the starter motor at least by a predetermined delay period.
Owner:HITACHI ASTEMO LTD +1

Hybrid Vehicle

A hybrid vehicle is provided, in which lean limit operation of an engine can be achieved while consumption of electric power of a battery is suppressed when a change of engine torque in the vicinity of a lean limit is suppressed or when an air-fuel ratio is controlled so as to come close to a lean limit during engine operation. The hybrid vehicle in which an engine, a motor-generator, and a drive wheel are mutually connected via differential connection means includes a control device which maintains an output of the engine at a constant level by increasing / decreasing an engine rotational speed and decreasing / increasing a rotational speed of the motor-generator in accordance with a decrease / increase of the engine torque in the vicinity of the lean limit.
Owner:TOYOTA JIDOSHA KK

Driving force control system for vehicle

A driving force control system for a vehicle having a mechanism for changing an engine speed continuously. The driving force control system basically controls said mechanism in a manner such that the engine speed is adjusted to optimize fuel economy. The driving force control system is configured to determine an index representing a demand to enhance agility of behavior of the vehicle based on an actual behavior of the vehicle or an amount of operation carried out by a driver to cause said behavior. An upper limit value of the engine speed of the case in which a drive demand is increased is determined on the basis of the index, and the upper limit value is set to the higher value with an increase in the index representing the demand to enhance agility of behavior of the vehicle.
Owner:TOYOTA JIDOSHA KK

Generator power-based cold start strategy

ActiveUS20090140521A1Improve engine cold start performanceLow engine speedHybrid vehiclesAnalogue computers for vehiclesPower limitsElectric vehicle
The method of the invention controls engine speed during engine starting for a hybrid electric vehicle that includes a battery, an engine and a generator, acting as a motor, whereby generator torque assists the engine to develop a stable running speed throughout an engine start event, particularly a cold engine start event, without violating battery power limits.
Owner:FORD GLOBAL TECH LLC

Generator power-based cold start strategy

The method of the invention controls engine speed during engine starting for a hybrid electric vehicle that includes a battery, an engine and a generator, acting as a motor, whereby generator torque assists the engine to develop a stable running speed throughout an engine start event, particularly a cold engine start event, without violating battery power limits.
Owner:FORD GLOBAL TECH LLC

Control apparatus and control method for multi-cylinder engine

In a multi-cylinder engine having a compression ignition combustion mode, a vibration detecting sensor that is preferably mounted in a cylinder block or a cylinder head is used to detect a frequency and the detected frequency is appropriately analyzed to detect or estimate a cylinder pressure peak value and peak timing for each cylinder. An amount of internal EGR, a fuel injection condition, an engine speed and the like are then controlled so as to bring each of these parameters into an appropriate range thereof. The control apparatus suppresses variations in combustion states among different cylinders and different cycles arising from unit-to-unit variations or deterioration in the engine or part-to-part variations or deterioration in a component thereof.
Owner:HITACHI LTD

Marine propulsion system

A marine propulsion system includes a transmission mechanism arranged to transmit a driving force generated by an engine to propellers with a speed thereof changed to a low speed reduction ratio and a high speed reduction ratio; a control lever section operated by a user in controlling drive of the engine; and a control portion and an ECU controlling a shift between reduction ratios of the transmission mechanism based on operation of the control lever section by the user. The control portion and the ECU control a shift between reduction ratios of the transmission mechanism based on a transmission control map providing a reference for a shift between reduction ratios of the transmission mechanism taking into consideration an engine speed of the engine and a lever opening of the control lever section. This arrangement provides a marine propulsion system in which both acceleration performance and maximum speed can approach levels that a user desires.
Owner:YAMAHA MOTOR CO LTD

System for detecting a battery malfunction and performing battery mitigation for an hev

A system for detecting malfunction of a battery in a hybrid electric vehicle and optionally mitigating the battery fault. A neural network forms a diagnostic circuit which receives signals representative of the required driveshaft torque and speed over a diagnostic period and a prior state of charge of the battery at the beginning of the diagnostic period as input signals. The diagnostic circuit generates an output signal representing a difference between an estimated state of charge of the battery at the end of the diagnostic period and the actual state of charge of the battery. In the event that the difference exceeds a predetermined threshold, a battery fault signal is generated. The battery fault signal may be employed to vary the engine speed and / or torque to perform battery fault mitigation by increasing the state of charge of the battery.
Owner:TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA

Vacuum Boost For Vehicle Braking

Power brakes are typically vacuum assisted, with the vacuum provided from the intake manifold. If the engine is commanded to operate for a long period at a condition with low intake manifold vacuum, the vacuum within the brake booster may drop to a level which is marginal or insufficient for a present or subsequent braking operation. To ensure sufficient vacuum in the intake manifold to provide to the brake booster, the engine may be commanded to operate at a condition to increase intake manifold vacuum by one of: adjusting cam timing, increasing engine speed, and increasing EGR. In the case of a stop-start vehicle, the engine speed is increased from zero to a condition that provides the desired vacuum.
Owner:FORD GLOBAL TECH LLC

Method of controlling engine speed of hybrid vehicle

A method of controlling an engine speed of a hybrid vehicle including a motor that is connected to a transmission, a battery that provides a driving voltage to the motor, an engine that is selectively connected to the motor through an engine clutch, and a hybrid starter-generator (HSG) that is connected to the engine includes: comparing, when the engine is started, an external air temperature to a setting temperature; setting a battery rated derating factor based on the comparison of the external air temperature to the setting temperature; determining an output area of the HSG according to a battery voltage; and outputting an available torque of the HSG based on the set battery rated derating factor and the determined HSG output area.
Owner:HYUNDAI MOTOR CO LTD

Enigne-driven work machine

An engine-driven work machine having a target engine speed selection unit and a control unit. The target engine speed selection unit selects and specifies an arbitrary target engine speed from among a plurality of target engine speeds that is set in stepwise fashion. The control unit electrically controls the opening and closing of a throttle valve so that the actual engine speed conforms to the specified target engine speed.
Owner:HONDA MOTOR CO LTD

Method for NOx Reduction

The present application relates to mitigating NOx emissions, and more particularly, to vehicles including a selective catalytic reduction (SCR) system in the exhaust of a diesel or gasoline engine. In one example a method includes temporarily increasing a liquid reductant dosing value injected by an injector from a first dosing value to a second dosing value, the temporary increase in response to a change from injecting liquid reductant onto a first impact location on a disperser device to injecting onto a second impact location on the disperser device.
Owner:FORD GLOBAL TECH LLC

Turbine engine and control method

A turbine engine includes a compressor, a combustion chamber, first and second turbines downstream from the combustion chamber, a first rotary shaft constrained to rotate at least with the compressor and the first turbine, a second rotary shaft constrained to rotate with the second turbine, the second rotary shaft nevertheless being free to rotate relative to the first rotary shaft, and a regulator for controlling the feed of fuel to the combustion chamber. The regulator cuts off the feed of fuel to the combustion chamber if the speed of rotation of the second rotary shaft exceeds a maximum threshold that varies as a function of at least one indicative physical parameter associated with mechanical power being extracted from the combustion gas by the second turbine. A method of regulating the turbine engine is also presented.
Owner:SAFRAN HELICOPTER ENGINES

Valve control apparatus

A first camshaft (24) operates the exhaust valves (18) and a first intake valve (12) for each cylinder (8), and a second camshaft (38) operates the second intake valve per cylinder (14), the second camshaft further having a phase adjuster (62) for adjusting the timing of the second camshaft (38) relative to the first camshaft (24). Both the exhaust valves and the first intake valve are actuated by rocker arms (30), (36), for providing a short and light-weight first intake valve rocker (36) having a high maximum operational speed capability and low friction. The first camshaft (24) is located above the rockers, the cam followers are located generally in the middle of the rockers (30), (36), and the rocker mounts (33), (35) are located on the inboard ends of the rockers, providing rockers that have both light-weight and a small pivot angle for providing low valve stem to rocker friction.
Owner:MENDLER EDWARD CHARLES

Device for protection against icing for aircraft engines and related de-icing method

A device for protection against icing for aircraft engines including at least one sensor, sensitive to an amount of accumulated ice, arranged in the air intake of an aircraft engine, a system for measuring the amount and comparing the amount to be predetermined threshold and a triggering system for launching a response to the detection of the crossing of the predetermined threshold, the response may be an alarm, an increase in the engine power delayed by the engine control system or the return of hot air upstream of the engine.
Owner:AIRBUS OPERATIONS (SAS)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products